Исследование динамики ракеты при ее выходе из пусковой шахты при работающем двигателе

Нестационарная часть ветра характеризует степень его равномерности по времени и называется порывистостью. Она обусловлена атмосферной турбулентностью, вызванной воздействием поверхности земли при обтекании ее стационарной частью ветра.

Сопротивляясь стационарной части ветра, ракета, деформируясь отклоняется в направление ветра. Одновременно с этим на боковых сторонах ракеты возникают нест

ационарные срывы потока стационарной части ветра. Эти срывы, возникающие то с одной, то с другой стороны ракеты, вызывают ее колебания в поперечном к ветру направлении. В итоге под действием ветра и его порывов на ракету действует система нагрузок, приводящая к очень сложным ее деформациям. Сложность обтекания реальным ветром конкретной системы не дает возможности создать удовлетворительные аналитические методы расчета деформации ракеты. Поэтому, единственным способом оценить действие этих нагрузок оказывается испытание моделей в аэродинамической трубе, либо проведение расчетов в специализированных программных аэродинамических пакетах.

Обычно транспортные космические системы имеют цилиндрические формы составляющих ее блоков. Поэтому для оценки сил, действующих на ее элементы вблизи земли, следует иметь ввиду явления, присущие поперечному (или близкому к нему) обтеканию цилиндра при дозвуковых скоростях. Дело в том, что благодаря проявлению вязкости воздуха при дозвуковых скоростях могут реализовываться различные режимы обтекания с большим или меньшим сопротивлением в зависимости от скорости ветра и диаметров отдельных частей ракеты. [17], [18]

5.1 Постановка задачи

Определить методику расчета аэродинамических нагрузок, действующих на ракету при ее выходе из шахтной пусковой установки. Определить характер влияния ветровой нагрузки на ракету.

В связи с тем, что данная задача мало освещена в литературе и зачастую не поддается аналитическому решению, провести расчет с помощью современного расчетного средства, применяемого для решения задач газовой динамики.

Провести расчет для ракеты выходящей из ШПУ, используя параметры выхода, описанные в первом разделе и ветровой нагрузки.

По результатам расчета, требуется построить эпюры моментов и перерезывающих сил.

5.2 Подготовка и проведение численного эксперимента

· Построение твердотельной модели

Расчетная модель была построена в пакете Solid Works. В данном случае, для исключения влияния стенок на результат, необходимо учитывать площадь заполнения телом расчетной области, требуется, чтоб это параметр был примерно равен 1/8 площади расчетной области.

· Построение блочной сетки

Блочная сетка, для схемы изображенной на рис.5.1, создавалась в специализированном сеточном генераторе ICEM CFD компании ANSYS.

Рисунок 5.1. Схема моделирования

В результате построения сетки с применением блока «O-grid», т.е. грани ячеек внутреннего блока расположены перпендикулярно к касательным генерируемого тела, была создана расчетная модель (рис.5.2)

Рисунок 5.2. Сгенерированная блочная сетка

Необходимо отметить, что при разных углах атаки приходится изменять количество ячеек на поверхности тела, так как, к примеру, при изменении угла атаки с 15 на 90 градусов под особое внимание будет попадать сетка на цилиндрической части, а не на носовой. То есть при отработке модели требуется неоднократное корректирование сгенерированной сетки для конкретного расчетного случая.

· Подготовка решателя расчетного комплекса и проведение расчета

Для примера примем, что на ракету в перпендикулярном направлении дует «свежий» ветер, эта характеристика соответствует 10 м/с. Скорость и высоту выхода ракеты возьмем из предыдущего расчета. Для данной схемы (рис.5.1) проведем расчеты в П.П.П. Ansys CFX.

В рассматриваемой схеме суммарная скорость и направление набегающего потока определяются из скорости набегающего потока при движении, вычисленной в предыдущем расчете, и скорости ветра

;

.

Для предварительной оценки проведем шесть расчетов с параметрами, указанными в таблице 5.2. Параметры расчетной среды приведены в таблице 5.3.

Таблица5.2. Расчетные параметры

H, м

, м/с

, град

1

0,492

12.93

50.65

2

1,341

16.73

36.7

3

2,225

19.82

30.29

4

3,307

22.95

25.82

5

4,575

26.07

22.55

6

6,398

29.87

19.55

Таблица 5.3. Параметры расчетной среды

Параметр

Значение

давление, Па

99600

температура, K

298

плотность воздуха,

1,2

Данный расчет проведен с использованием SST-модели турбулентности, так как данная модель более точна и надежна для широкого класса потоков (т.е., потоков подверженных градиентам давления, обтекание профилей), чем стандартная k-w модель турбулентности. [16]

Напомним, что жидкость, находящаяся в расчетной области, при M << 1 будет считаться несжимаемой.

· Получение результатов

В результате расчета были получены теневые картины обтекания ракеты. Приведем такие картины для расчетного примера №6 (рис.5.3, рис.5.4).

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18 


Другие рефераты на тему «Военное дело и гражданская оборона»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы