Радиационное поражение

План

Введение

1. Патофизиология

2. Клинические признаки

3. Лечение

4. Деконтаминация в отделении неотложной помощи

5. Дезактивация на госпитальном этапе

6. Дилемма эвакуации

7. Размещение пострадавших в госпитале

8. Особые аспекты радиационных катастроф

Литература

ВВЕДЕНИЕ

Существование радиации

вызывает серьезную тревогу у населения. Мы не могли видеть, слышать, чувствовать или ощущать радиацию, пока она не привлекла наше внимание во время событий, имевших место в Исландии в 1979 году. А 26 апреля 1986 году в Советском Союзе произошла самая тяжелая в истории катастрофа вследствие взрыва и пожара на четвертом блоке атомной станции в Чернобыле. По количеству радиоактивного выброса в атмосферу и площади загрязнения окружающего пространства, по отдаленным последствиям, количеству острых поражений и числу погибших авария в Чернобыле стала наиболее значительной ядерной катастрофой со времен атомной бомбардировки Хиросимы и Нагасаки.

В настоящей главе кратко излагаются физические основы радиации, приводятся данные о ее наиболее частых источниках и о воздействии радиации на ткани, описываются признаки и симптомы радиационного поражения, а также оценка и лечение подобных поражений.

1. ПАТОФИЗИОЛОГИЯ

Радиация может классифицироваться как ионизирующая и неионизируюшая. Ионизирующая радиация, присущая процессам атомного распада, возникает при ядерных взрывах, а также в ядерных реакторах, радиоактивных материалах и в рентгеновских установках. Она вызывает ионизацию, природа которой состоит в том, что при взаимодействии электронов с веществом образуются пары ионов. В результате вместо нейтральных атомов образуются свободные электроны, несущие отрицательные заряды, и положительно заряженные атомы, потерявшие эти электроны. При попадании таких ионизированных атомов в организм человека функции биологических систем могут нарушаться. С другой стороны, примером неионизирующей радиации (излучения) могут служить радиоволны, свет и микроволны.

Излучение бывает либо корпускулярным, либо электромагнитным. Электромагнитное излучение возникает в форме волн и не имеет ни массы, ни заряда. Электромагнитное излучение присутствует (перечислено в порядке уменьшения энергии) вгамма-лучах, рентгеновских лучах, ультрафиолетовых лучах, видимых лучах света, инфракрасных лучах, микроволнах и радиоволнах. Как гамма-волны, так и рентгеновские лучи представляют электромагнитное излучение, способное вызвать ионизацию. Отделившиеся от атомов электроны действуют как вторичные частицы, вызывая дополнительную ионизацию. Рентгеновские лучи отличаются от гамма-лучей только тем, что они образуются вне атомного ядра; гамма-лучи возникают при распаде ядер. Оба эти излучения проходят большие расстояния и беспрепятственно проникают в клетки организма. Как рентгеновские, так и гамма-лучи могут быть легко обнаружены с помощью счетчика Гейгера—Мюллера.

Хотя альфа- и бета-частицы не электромагнитны, они также вызывают ионизацию. Альфа-частица состоит из двух протонов и двух нейтронов (аналогично атому гелия без электронов), выделяющихся из ядра радиоактивного атома. Альфа-частицы проходят только несколько сантиметров и могут быть полностью остановлены листом бумаги или роговым слоем эпидермиса. Бета-частица является отрицательно заряженным электроном, испускаемым при распаде ядра радиоактивного атома. Бета-частицы проходят несколько метров в воздухе, но они легко проникают через кожу. Однако как альфа-, так и бета-частицы опасны при попадании в организм через раны, при проглатывании или вдыхании. Загрязнение поверхности тела этими частицами может быть обнаружено с помощью соответ­ствующих счетчиков.

Энергия, накапливающаяся при радиации в единице массы вещества, обозначается как доза облучения. Рад — единица поглощенной дозы радиации составляет 100 эрг энергии, накопленной в 1 г вещества. Полученная доза в 1 рад от потока нейтронов или альфа-частиц вызывает биологическое поражение, в 3—20 раз большее, чем аналогичная доза (выраженная в радах) при облучении рентгеновскими или гамма-лучами. Рем — рентгенологический эквивалент для человека (или бэр — биологический эквивалент рада) — является расчетной единицей радиации; при этом учитываются поглощенная доза (в радах) и качественный фактор; эти величины умножаются для определения биологической эффективности различных типов радиации. При оценке воздействия на биологические системы мы обычно используем термин "рем" или "миллирем" (мрем). Для рентгеновских лучей, гамма-лучей и бета-частиц единицы рад и рем эквиваленты. Доза ионизирующей радиации при воздействии на весь организм, которая приводит к гибели 50 % облученных, составляет примерно 400 рем (бэр). Смертность при получении дозы около 600 рем близка к 100 %. Облучение беременных женщин в суммарной дозе в несколько рем, как правило, не влияет на плод. Радиационным порогом при этом является доза в 20 рем, полученная в период между 18-м и 35-м днем беременности, т. е. в наиболее важный период формирования плода. Средняя допустимая ("нормальная") доза облучения для человека составляет 70—170 мрем/год.

Дозы облучения, получаемого в течение длительного времени, менее опасны, чем эквивалентные дозы, полученные при кратковременном облучении. Например, суммарная доза радиации в 100 рем, полученная в течение одного года, гораздо менее опасна, чем такая же доза, полученная за 1 секунду. Доза радиации от точечного источника уменьшается обратно пропорционально квадрату расстояния от этого источника.

Биологические эффекты радиации являются следствием ионизации. Образующиеся свободные радикалы могут вызвать разрушение спиралей ДНК и РНК. Изменения в клетке и хромосомах могут быть минимальными и не представляют опасности для организма. Они могут обусловить возникновение аберраций, передающихся последующим поколениям, или привести к гибели клеток или их неспособности к воспроизведению.

2. КЛИНИЧЕСКИЕ ПРИЗНАКИ

Наиболее выраженными системными признаками и симптомами при воздействии больших доз радиации (более 100 рем, т. е. 100 000 мрем) являются общее недомогание, тошнота, рвота и понос, судороги, покраснение кожи, а позднее — кровотечение, анемия и инфекция. Тошнота и рвота иногда наблюдаются и при воздействии менее 100 рем (табл.1). Их появление в пределах 2-часового периода после экспозиции предполагает получение дозы радиации более 400 рем. Если тошнота и рвота возникают позднее чем через 2 ч после воздействия радиации, то полученная доза составляет менее 200 рем; их отсутствие через 6 ч после экспозиции означает получение дозы менее 50 рем. Кожная эритема (местная или генерализованная) указывает на воздействие более 300 рем. Диарея свидетельствует об облучении желудочно-кишечного тракта в дозе более 400 рем. Возникновение судорог указывает на радиационное воздействие на центральную нервную систему более 2000 рем. Подсчет количества лейкоцитов имеет прогностическое значение. Если через 48 ч количество лейкоцитов превышает 12ОО/мм3, то прогноз хороший, если оно составляет 300— 1200/мм3, то прогноз довольно благопри­ятный, а менее ЗОО/мм3 — плохой. Кровотечение, анемия и инфекционные осложнения могут возникнуть после латентного периода, т. е. через 20—30 дней.

Страница:  1  2  3  4 


Другие рефераты на тему «Военное дело и гражданская оборона»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2017 - www.refsru.com - рефераты, курсовые и дипломные работы