Процессинг РНК. Теломеры и теломераза

- Так как теломераза синтезирует сегменты ДНК, повторяющиеся много раз, используя только один сегмент своей РНК, она должна обладать способностью периодически (после завершения синтеза каждого повтора) перемещать (транслоцировать) матричный участок в район 3'-конца синтезируемой теломерной ДНК. Источником энергии для такого перемещения, по-видимому, служит сама реакция синтеза цепи теломерной Д

НК, поскольку дезоксинуклеозидтрифосфаты - субстраты этой реакции - высокоэнергетические вещества.

Такое удлинение возможно, потому что концы хромосом содержат повторы из нескольких нуклеотидов (например, у человека ТТАGGG), которым комплементарен участок РНК - компонента теломеразы. Таким образом, теломераза узнает выступающий 3'-конец и удлиняет его. В таком случае удается, снова с использованием ДНК-затравки и РНК-матрицы, достроить конец ДНК (см. рис. 3). Теломеразная машина устроена таким образом, что конец хромосомы может не только сохраняться, но и удлиняться в ряду поколений. Действительно, последнее нетрудно себе представить, если достраиваемый 3'-конец будет достаточно длинным. Одна из причин старения видится в том, что при отсутствии теломеразы в некоторых тканях происходит укорачивание хромосомы с потерей важных генов. Наоборот, бессмертие ряда клеток в культуре вне организма, свойственное, как правило, клеткам из опухолей, объясняется реактивацией теломеразы. Мы кратко рассмотрели эту интересную проблему, связанную с активностью теломеразы и вечными проблемами биологического старения и опухолевого роста, поскольку оказалось, что иногда в борьбу с укорочением концов хромосом вступают мобильные элементы. У плодовой мушки дрозофилы отсутствует теломеразная машина, но концы ДНК удлиняются за счет перемещений ретротранспозонов. На этом примере впервые показана важная структурная и функциональная роль ретротранспозонов. Они выступают как компоненты генома, спасающие хромосому от укорачивания. В качестве спасателей выступают ретротранспозоны, относящиеся к семействам, без длинных концевых повторов. Ретротранспозоны перемещаются, образуя повторяющуюся структуру, в которой элементы соединены друг с другом по типу "голова к хвосту" (см. рис. 3). Сначала на РНК-транскрипте как на матрице с помощью ревертазы строится комплементарная нить ДНК, а затем после удаления РНК-матрицы достраивается другая. Таким образом, если эти ретротранспозоны и существовали когда-то как элементы-паразиты, то впоследствии геном хозяина приспособил их для выполнения столь важной функции, как сохранение концевых участков хромосом. Эти ретротранспозоны стали уже не эгоистами, а бесценными помощниками, спасающими хромосому от потери генов.

1. На первой стадии теломераза находит 3'-конец теломерной ДНК, с которым часть матричного участка теломеразной РНК образует комплементарный комплекс. При этом теломераза использует 3'-конец хромосомной ДНК в качестве праймера.

2. Далее наступает очередь РНК-зависимой ДНК-полимеразной активности теломеразы. Она обеспечивается специальной субъединицей теломеразы, которая по устройству своего каталитического центра во многом сходна с обратными транскриптазами ретровирусов и ретротранспозонов.

3. Когда синтез ДНК-повтора заканчивается, происходит транслокация, то есть перемещение матрицы и белковых субъединиц фермента на заново синтезированный конец теломерной ДНК, и весь цикл повторяется вновь.

Знакомство даже с весьма схематичным описанием механизма теломеразной реакции (см. рис. 3) приводит к заключению, что двумя компонентами - обратной транскриптазой и теломеразной РНК - для ее осуществления обойтись нельзя.

Нет сомнений в том, что в его составе должны быть субъединица, отвечающая за поиск и связывание 3'-конца хромосомы (и выполняющая таким образом своеобразную якорную функцию); субъединица, ответственная за транслокацию; субъединицы, связывающие продукт реакции (однотяжевую ДНК). В составе теломеразы обычно обнаруживается и белковая субъединица с нуклеазной активностью, которая, по-видимому, отщепляет от 3'-конца теломерной ДНК один за другим несколько нуклеотидов до тех пор, пока на этом конце не окажется последовательность, комплементарная нужному участку матричного сегмента теломеразной РНК. Эти субъединицы теломеразы, выполняющие разнообразные функции в ходе синтеза G-цепи теломерной ДНК, изображены на рис. 4, на котором приведена гипотетическая структура теломеразы дрожжей. Нужно еще раз подчеркнуть, что полный белковый состав фермента не известен до сих пор ни в одном случае. Поэтому в табл. 1 приведены характеристики только хорошо изученных белковых субъединиц нескольких теломераз.

Широкое распространение теломераз среди эукариот говорит о том, что механизм синтеза теломерной ДНК, который мы наблюдаем у современных организмов, возник очень давно. Более того, эволюционно-генетический сравнительный анализ нуклеотидных последовательностей генов каталитических субъединиц теломераз и других обратных транскриптаз показывает, что этот механизм мог существовать еще до появления первых эукариотических клеток.

С-цепь теломерной ДНК синтезируется с помощью обычной ДНК-полимеразы (см. рис. 2). Поэтому 3'-концевой участок G-цепи, на котором, по-видимому, первоначально была РНК-затравка, в конечном итоге остается в однотяжевом состоянии (то есть в принципе он готов к тому, чтобы теломераза нарастила на нем новый повтор).

Активность теломеразы у высших эукариот обнаружена лишь в трех типах клеток:

- генеративных,

- раковых

- линиях иммортализованных клеточных культур.

половых и стволовых клетках. В остальных типах клеток синтез этого фермента прекращается еще в эмбриональный период развития

В организме при дифференцировке клеток теломераза репрессируется. Экспрессию теломеразы считают фактором иммортализации клеток.

В соматических клетках, культивируемых in vitro, теломераза не работает и теломеры постепенно укорачиваются. Длина теломер достоверно коррелирует с пролиферативным потенциалом (например, в фибробластах человека). Укорочение теломер может играть роль митотических часов, отсчитывающих число делений клетки. По достижении критической длины теломерной ДНК запускаются процессы остановки клеточного цикла [5]. Блок клеточных делений наступает еще до того, как теломера исчезла вовсе. Существует некоторая минимальная длина теломеры, когда деление еще разрешено. Иными словами, прекращение деления наступает до того, как начал разрушаться смысловой текст генома. Таким способом эукариоты страхуют себя от появления монстров вследствие недорепликации ДНК.

Опубликованная в 1998 году в журнале "Science" статья американских исследователей благодаря средствам массовой информации привлекла внимание не только ученых (а в первую очередь не ученых) в связи с проблемами старения и "клеточного бессмертия". В этой прекрасной работе коллектива, возглавляемого Джерри Шеем, удалось на 40% увеличить число делений нормальных соматических клеток человека в культуре. С помощью генно-инженерных методов в клетки был введен ген каталитической белковой субъединицы теломеразы и прилегающий к нему участок ДНК, регулирующий его работу. При активной работе гена увеличивался как размер теломерной ДНК, так и продолжительность жизни клеточных культур. Сверх обычных 50 делений клетки прошли дополнительно 20 делений.

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Биология и естествознание»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы