Анализ возможностей использования сорбентов при очистке сточных вод

Впервые в истории человечества «интеркалированный гибрид» на основе глины и мочевины был получен при производстве раннего китайского фарфора [11].

Ориентация органических катионов алкиламмония (N+R1) в межслоевом пространстве различных слоистых силикатов определяется силами, действующими на них со стороны заряженных слоев и соседних катоинов [12,13]. Для уточнения характера взаимодействия а

дсорбированных органических катионов с поверхностью слоистых силикатов активно использовали ИК-спектроскопию [12]. Например, ИК-спектр дециламмоний вермикулита в области 400-3400 см-1 помимо полос, свойственных чистому вермикулиту и соответствующих колебаниям дециламмония показал широкую полосу поглощения валентных колебаний NH3 в области 3000-3200 см-1, свидетельствующую об образовании этой группой водородных связей с атомами кислорода силикатной группы [14]. ИК- исследования, проведенные для октиламмонийвермикулита [14] показали, что полоса деформации колебаний группы N+H3 обнаруживает зависимость интенсивности от угла падения лучей, вызванную тем, что связь N-C в цепи катиона ориентирована перпендикулярно силикатным слоям. В образце, в котором помимо катиона были адсорбированы и нейтральные молекулы аминов, эта зависимость не проявлялась, из чего следует, что ориентация молекул не являлась строго упорядоченной. В целом расположение катионов сложной формы зависит от строения самого катиона [15]. Был проведен анализ рентгенограмм образцов вермикулита с катионами, имеющими сложную форму (образцы получали заменой в группе N+H3 атомов водорода на объемные группы CnH2n+1, CH2CH=CCl-CH3); анализ показал, что величина межплоскостного расстояния не зависела ни от количества, ни от длины углеводородной цепи катионов [15]. Вследствие стерических затруднений сила электростатического взаимодействия органического катиона с анионной силикатной структурой уменьшается. Поэтому энергетически более выгодным для катионов является плоское расположение на кислородсодержащей поверхности силикатного слоя [15].

Полученные таким образом модифицированные глины широко применяют в красителях, косметике и смазочных материалах, используемых при бурении скважин.

Одно из самых ранних систематических исследований взаимодействия между алюмосиликатным слоистым минералом и макромолекулами относится к 1949 г., когда было описано поглощение ДНК монтмориллонитом (ММТ) [16]. Последний удерживался в галереях алифатическими цепями, иммобилизованными на силикатной поверхности.

В 1960 г. Усков обнаружил, ПММА выше температуры стеклования взаимодействует с монтмориллонитом, модифицированным октадециламмонием [17]. В 1961 г. Blumstein [18] при полимеризации винилового мономера in situ получил полимер, внедренный в межслоевое пространство монтмориллонита.

Двумя годами позже Greenland использовал систему поливиниловый спирт-монтмориллонит с целью доказательства того, что полимер может самостоятельно внедряться в межслоевое пространство из водного раствора [19]. В 1975 году Tanihara и Nakagawa получили аналогичный результат при интеркаляции полиакриламида и полиэтиленоксида из водного раствора [20].

Наряду с ионными органическими модификаторами глин могут быть использованы неионные модификаторы, которые связываются с поверхностью глины за счет водородных связей. В некоторых случаях органоглины, полученные с использованием неионных модификаторов оказываются более химически стабильными, чем органоглины, полученные с использованием катионных модификаторов (см. рис. 2) [21].

Как видно, наименьшая степень десорбции (рис.4.) наблюдается в случае неионного взаимодействия между поверхностью глины и органического модификатора. По всей видимости, водородные связи, образованные между этиленоксидной группой и поверхностью глины делают эти органоглины химически более стабильными, чем ОМСС полученные по ионному механизму.

Таким образом, создание нанокомпозитов сводится к взаимодействию между полимером и неорганической фазой. В результате образуются материалы с уникальными свойствами, которыми не обладают обычные полимеры.

Несмотря на обширность проведенных исследований, первая производственная программа была реализована только в 1988 г. в Японии в Центральной научно-исследовательской лаборатории промышленного концерна “Toyota” [22]. Тогда методом предварительного внедрения ε-капролактама в межслоевое пространство с последующей его полимеризацией in situ был синтезирован и изучен полимерный нанокомпозит на основе полиамида – найлон-6.

Современное состояние исследований в области нанокомпозитов на основе слоистых силикатов достаточно полно отражены в обзорах Mulhaupt [23, 24], Giannelis [25], Lagaly [26], Frisch [27] и Gilman [28].

1.2 Методы синтеза полимерных нанокомпозитов на основе слоистых силикатов.

Одно из интереснейших и перспективных направлений в науке о полимерах и материаловедении последних лет - разработка принципов получения полимерных нанокомпозитов.

Различают 3 вида полимерных гибридов с нанодисперным распределением слоистого силиката (рис.5): Первый из них — традиционный микрокомпозит, в котором частицы наполнителя сохраняют исходные размеры (несколько микрометров). Такой материал образуется, если молекулы полимера не проникают между слоями силиката. Другой материал — нанокомпозит с интеркалированной структурой, реализуемой в том случае, когда молекулы полимера внедряются в межслоевое пространство частиц силиката. При этом увеличивается межплоскостное расстояние, но сохраняется упорядоченная слоистая структура частиц. И, наконец, третий материал — эксфолиированный нанокомпозит с расслоением частиц силиката на единичные нанослои, диспергированные в полимерной матрице. В зависимости от условий синтеза, а также при неоднородности структуры компонентов возможно образование смешанных композитов, содержащих указанные выше структуры в различных пропорциях.

Рис.5. Схематическое представление структуры композита, содержащего слоистый силикат

Существуют следующие основные способы получения нанокомпозитов на основе полимеров и слоистых алюмосиликатов: интеркаляция полимера или преполимера из раствора или расплава и интеркаляционная полимеризация in situ (рис. 6).

Наиболее распространенный способ получения полимер-силикатных нанокомпозитов — это механическое смешение расплава полимера с модифицированным органическими катионами слоистым силикатом.

интеркаляция мономера полимеризация in situ

Рис. 6. Схема получения нанокомпозитов in situ методом:

*- слоистый силикат; · - мономер.

При этом достигается интеркаляция частиц полимеров (интеркалированные системы), и только часть частиц слоистых силикатов расслаивается на единичные слои наноразмерной толщины. В результате улучшаются физико-механические характеристики, как, например, в случае полистирольных, полиэтиленоксидных, полипропиленовых композиций [29-31]. При получении этим методом полиолефиновых композитов наполнитель модифицируют малеиновым ангидридом [32] или проводят сополимеризацию олефина с полярным сомономером [33-36]. Модифицирование повышает совместимость полимера со слоистым силикатом.

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Экология и охрана природы»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы