Основные понятия молекулярной биологии

Образование белковой глобулы.

Для упрощения рисунков введем условные обозначения групп аминокислот.

Процесс сворачивания белковой цепи после ее синтеза происходит в два этапа.

I этап. Исходно удаленные друг от друга гидрофобные аминокислоты постепенно сближаются и образуют сильно гидрофобные зоны .

Такие зоны, по возможности, стремятся еще сблизиться и образовать гидрофобное ядро глобулы. Ввиду ограниченности гибкости цепи не все гидрофобные аминокислоты попадут внутрь. Некоторые гидрофобные боковые ветви окажутся на поверхности глобулы. Однако преобладать там (кроме особых случаев, например белков мембран) будут боковые ветви гидрофильных аминокислот. Это обеспечит хорошую смачиваемость, а значит — растворимость белка в водной среде.

II этап. Хотя глобула прошла этап первоначального формирования и вчерне свернулась, она еще рыхлая. Толчки молекул воды могут вызвать взаимные перемещения участков глобулы. В ходе этих перемещений сближаются активные группы боковых ветвей аминокислот, способные образовать дополнительные слабые (ионные и водородные) связи. Они фиксируют структуру глобулы. Если фиксации не происходит, то первоначально образовавшиеся гидрофобные зоны и все внутреннее ядро могут претерпеть одну или несколько реорганизаций, пока не будет найдена оптимальная структура, которую смогут зафиксировать ионные и водородные связи. Эти связи слабы, но их много, и глобула приобретает не только окончательную конфигурацию, но и достаточную прочность. Если же функция белка требует большей жесткости, то наследственно задается такое расположение цистеинов в первичной структуре белка, что в завершающей фазе формирования глобулы они оказываются друг против друга и прочно «сшивают» дисульфидными мостиками глобулу.

Как бы сложно не была свернута белковая глобула, она образована линейным полимером и потому имеет два конца — две концевых аминокислоты. Из способа соединения аминокислот, показанного на рис. 8, следует, что концевыми химическими группами всего белка будут: с одной стороны аминогруппа — NH3, с другой — карбоксил —СООН. Соответственно принято называть эти концы белковой молекулы: «N-конец» и «С-конец».

Расположенные на поверхности боковые ветви аминокислот определяют взаимоотношения белка с внешней средой. Электрически заряженные, поляризованные и склонные к образованию водородных связей активные группы гидратируются и тем самым, как уже упоминалось, обеспечивают растворимость белка в воде. Однако такие группы могут образовывать ионные связи и между разными глобулами, вызывая их агрегацию и вьшадание белка в осадок. Во избежание этого следует растворять белки не в чистой воде, а в слабом солевом растворе: ионы солей экранируют заряженные группы аминокислот (такая же солевая среда существует и внутри живых клеток). Иногда к раствору белка приходится добавлять (и в значительных количествах) мочевину, 0===C(NHg)g. Она способствует разрыву водородных связей между глобулами, замыкая эти связи на себя.

Необходимо разъяснить и природу явления «высаливания» — выпадания белков в осадок в крепких солевых растворах, например, сульфата аммония, (NH3SO4). Ионы солей активносвязывают воду, формируя собственные гидратные оболочки. Если таких ионов очень много, свободной воды не хватает для полной гидратации белков.

Второй важной характеристикой белков является электрический заряд. Суммарный заряд белковой глобулы равен алгебраической сумме положительных и отрицательных зарядов ионизированных боковых ветвей аминокислот, лежащих на поверхности белка. Ветви таких же аминокислот, оказавшихся внутри него, либо взаимно нейтрализованы в ионной связи, либо находятся в неионизованной форме из-за отсутствия воды внутри глобулы.

Боковые ветви аминокислот, расположенных на поверхности белковой глобулы, обеспечивают создание активного центра фермента. Рентгеноструктурньш анализ показал, что активный центр представляет собой впадину на поверхности белка, форма которой соответствует конфигурации молекулы (или молекул) субстратов ферментативной реакции. В строго определенных местах этой впадины располагаются активные группы аминокислот, ответственные за образование нескольких слабых связей с субстратом, удерживающих его во впадине и обеспечивающих правильную ориентацию реагирующих молекул .

Роль слабых связей внутри белковой глобулы показана в опытах по денатурации и ренатурации ферментов. В ряде случаев осторожным нагреванием, незначительными изменениями кислотности среды и другими воздействиями удается развернуть белковую глобулу (что подтверждают физические методы контроля). Фермент при этом «денатурирует» — утрачивает каталитическую способность. При постепенном восстановлении благоприятных условий глобула белка самопроизвольно и правильно сворачивается, ферментативная активность появляется вновь — происходит «ренатурация».

Литература

Авдонин П.В., Ткачук В.А, Рецепторы и внутриклеточный кальций.1994.-Наука, Москва. - С. 29-42.

Авцын А.П., Жаворонков А.А., Риш М.А., Строчкова Л.С. Микроэлементы человека, Медицина. М. -1991.

Анестиади В.Х., Нагорнев В.А. О пато- и морфогенезе атеросклероза. Кишинев, Медицина. -1985.-С.92.

Антонов В.Ф. Липиды и ионная проницаемость мембран. -М.: Медицина, 1982.

Аронов Д.М., Бубнова Н.Р., Перова Н.В. и др. Влияние ловастатина на динамику липидов и аполипротеидов сыворотки крови после максимальной физической нагрузки в период пищевой липемии у больных ИБС//Кардиология, -1995. -Т.35. -N 31. -С.38-39.

Атаджанов М.А., Баширова Н.С., Усманходжаева А.И. Спектр фосфолипидов в органах-мишенях при хроническом стрессе //Патологич. физиология и эксперим. терапия. -1995, -N 3: -С.46-48.

Страница:  1  2  3 


Другие рефераты на тему «Биология и естествознание»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы