Фундаментальные законы природы как основа формирования естественно-научной картины мира

Все это можно охарактеризовать, как попытки описать передачу действия через материальную ("механическую") среду.

Однако работами Фарадея (экспериментально), Максвелла (теоретически) и многих других ученых было показано, что существуют электромагнитные поля (в том числе и в вакууме) и именно они передают электромагнитные колебания. Так что же такое поле?

Для более предметного п

онимания этого феномена лучше всего воспользоваться неким абстрактным представлением: поле - это любая физическая величина, которая в разных точках пространства принимает различные значения, надо просто рассматривать поле как математические функции координат и времени какого-то параметра, описывающего явление или эффект.

Пользуясь двумя понятиями потока и циркуляции, можно прийти к знаменитым четырем уравнениям Максвелла, которые описывают практически все законы электричества и магнетизма именно через представление полей. Там, правда, используются еще два понятия: дивергенция - расхождение (например, того же потока в пространстве), описывающая меру источника, и ротор - вихрь. Из этих уравнений вытекает, что электрическое и магнитное поля связаны друг с другом, образуя единое электромагнитное поле, в котором распространяются электромагнитные волны, со скоростью, равной скорости света c = 3 ∙ 108 м/с. Отсюда, кстати, и был сделан вывод об электромагнитной природе света.

Уравнения Максвелла являются математическим описанием экспериментальных законов электричества и магнетизма, установленных ранее многими учеными и во многом - Фарадеем, про которого говорили, что он не успевает записывать то, что открывает.

Надо заметить, что Фарадей сформулировал идеи поля, как новой формы существования материи, не только на качественном, но и количественном уровне. Любопытно, что свои научные записи он запечатал в конверт, просив вскрыть его после смерти. Это было сделано, однако, лишь в 1938 г. Поэтому справедливо считать теорию электромагнитного поля теорией Фарадея - Максвелла. Поскольку все тела в микро- и макромире являются так или иначе заряженными, то теория Фарадея - Максвелла приобретает поистине универсальный характер. В рамках ее описываются и объясняются движение и взаимодействие заряженных частиц при наличии магнитного и электрического полей.

Возвращаясь к общему понятию поля как некоторого распределения соответствующих величин или параметров в пространстве и времени, можно считать, что такое понятие применительно ко многим явлениям не только в природе, но и в экономике или социуме при использовании соответствующих физических моделей. Необходимо только в каждом случае убеждаться -обнаруживает ли выбранная физическая величина или ее аналог такие свойства, чтобы описание ее с помощью модели поля оказалось полезным. Заметим, что непрерывность величин, описывающих поле, является одной из основных параметров поля и позволяет использовать соответствующий математический аппарат.

Так, после механической картины сформировалась новая к тому времени электромагнитная картина мира. Ее можно рассматривать как промежуточную по отношению к современной естественнонаучной.

Отметим некоторые общие характеристики этой парадигмы. Поскольку она включает не только представления о полях, но и появившиеся к тому времени новые данные об электронах, фотонах, ядерной модели атома, закономерностях химического строения веществ и расположения элементов в периодической системе Менделеева и ряд других результатов по пути познания природы, то, конечно, в эту концепцию вошли также идеи квантовой механики и теории относительности.

Главным в таком представлении является возможность описать как можно большее количество явлений на основе именно понятия поля.

Было установлено, в отличие от механической картины, что материя существует не только в виде вещества, но и поля. Электромагнитное взаимодействие на основе волновых представлений хорошо описывает не только электрические и магнитные поля, но и оптические, химические, тепловые и механические явления. Методология полевого представления материи может быть использована и для понимания полей иной природы. Сделаны попытки увязать корпускулярную природу микрообъектов с волновой природой процессов. Было установлено, что "переносчиком" взаимодействия электромагнитного поля является фотон, который подчиняется уже законам квантовой механики. Делаются попытки найти гравитон, как носитель гравитационного поля.

Однако несмотря на существенное продвижение вперед в познании окружающего нас мира, электромагнитная картина все же была не свободна от недостатков. Так, например, в ней не рассматривались вероятностные подходы, и более того, по существу, вероятностные закономерности и вовсе не признавались как фундаментальные, сохранялся детерминистический подход Ньютона к описанию отдельных частиц и жесткая однозначность причинно-следственных связей

В целом такое положение понятно и объяснимо, так как каждое проникновение в природу вещей лишь углубляет наши представления и требует с каждым следующим шагом по пути постижения природы вещей создания новых адекватных физических моделей.

3. Современная космологическая естественно-научная картина

мира

Современное существование естествознания в ее фундаментальных основаниях не может быть ограничено лишь знанием закономерностей макро- и микро- миров. Если микромир есть своего рода "стартовая площадка" для "разгона" современной физики, то мегамир есть действительный "полигон" для развертывания этих закономерностей. В этой связи основополагающей системой представлений в качестве общепризнанной выступает так называемая теория Большого взрыва (Big Beng).

В основе этой теории лежит предположение, что физическая Вселенная образовалась в результате гигантского взрыва примерно 10 миллиардов лет тому назад, когда все вещество и вся энергия современной Вселенной были сконцентрированы в одном сгустке с плотностью свыше 1025 г/см3 и температурой свыше 1016 К. Такое представление соответствует модели "Горячей Вселенной".

Модель Большого Взрыва была предложена в 1948 г. нашим соотечественником, физиком Георгием Гамовым. В свое время Г. Гамов, блестящий теоретик (учился в ЛГУ вместе с Л. Ландау, Н. Козыревым), до Великой Отечественной войны был самым молодым членом-корреспондентом АН СССР, затем эмигрировал на Запад и в связи с этим обстоятельством научные достижения замалчивались советской официальной наукой.

Вместе с тем, нельзя не отметить, что именно Г. Гамову принадлежат по крайней мере три научных результата "нобелевского ранга": упомянутая выше модель Большого Взрыва, предсказание температуры реликтового излучения и генетического кода ДНК. Кроме того он был отличным популяризатором науки и опубликовал более 20 прекрасных научных книг.

В основе концепции Большого Взрыва лежит положение о наличии некоторого первоначального "сгустка" "первовещества", обладающего колоссальной первоначальной энергией, который, собственно, и "взорвался".

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Биология и естествознание»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы