Пожарная безопасность

>

Рис .2.1. Классы пожаров

Раздел 3. Огнестойкость строительных конструкций

3.1 Понятие огнестойкости

Строительные конструкции, выполненные из органических материалов, являются одним из компонентов горючей системы и способствуют возникновению и распространению пожара. Конструкции, выполненные из неорганических материалов, не горят, но аккумулируют значительную часть теплоты (до 50%), выделяющуюся при пожаре. При определённой дозе аккумулированной теплоты, прочность конструкций падает и происходит их обрушение. Так, металл, который может нести значительные нагрузки десятки лет, при достижении критических температур 470 - 500°С разрушается.

Под огнестойкостью строительных конструкций понимается их способность сохранять несущую и ограждающую способность. Показателем огнестойкости строительных конструкций является предел огнестойкости – время (в часах, минутах) от начала испытания (пожара) конструкции до возникновения одного из следующих признаков:

а) появление трещин;

б) повышения температуры на её необогреваемой поверхности в среднем на 140°С или в любой точке этой поверхности более чем на 180°С в сравнении с температурой конструкции до испытания или более 200°С независимо от температуры конструкции до испытания;

в) потери несущей способности.

3.2 Огнестойкость железобетонных конструкций

Основными факторами, влияющими на предел огнестойкости конструкций, являются влага, коэффициент теплопроводности и прочность арматуры.

Влага в бетоне играет двоякую роль. Во-первых, при действии на бетон высоких температур вода, испаряясь, замедляет темп прогрева, увеличивая тем самым предел огнестойкости. Во-вторых, вода способствует взрывообразному разрушению бетона при интенсивном прогреве вследствие образования пара. Необходимым условием взрыва бетона является быстрое повышение температуры, т.е. прогрев по стандартному температурному режиму или непосредственное воздействие огня на конструкцию.

При пожарах и испытаниях через 10 – 20 мин после воздействия огня на конструкцию бетон взрывообразно разрушается, откалываясь от обогреваемой поверхности пластинами площадью 200 см2 и толщиной 0,5 – 1см. куски бетона отлетают на расстояние до 15м. Такое разрушение происходит по всей поверхности, приводя к быстрому уменьшению сечения конструкции и, как следствие, к потере несущей способности и огнезащитных свойств. При влажности бетона выше 5% и температуре 160 – 200°С, что способствует максимальному давлению пара в порах, бетон разрушается почти во всех случаях. При влажности 3,5 – 5% разрушение носит местный характер. При влажности менее 3% взрывы не наблюдаются. При нагревании по растянутому во времени режиму (с достижением стандартных температур через промежуток времени, увеличенный вдвое) бетон не взрывается, несмотря на его повышенную влажность (5 – 6%). При этом вид заполнителя бетона заметно не влияет на его разрушение.

Обычно взрывоопасное разрушение происходит на новостройках, в неотапливаемых подвалах и других влажных помещениях. Бетоны с плотностью, ниже 1250 кг/м3 не взрываются при влажности 12 – 14%. Это обусловлено тем, что такие бетоны имеют сообщающиеся поры и благодаря паропроницаемости внутри конструкций не создаётся значительных внутренних усилий.

Повышение температуры окружающей среды при пожаре сопровождается переносом теплоты в материал конструкции. Её тепло стремится к тепловому равновесию. Поэтому температура внутренних точек будет изменяться не только в зависимости от координат и их взаимного расположения, но и от времени. Такие процессы теплопередачи принято называть нестационарными.

В настоящее время разработано много различных методов решения задач нестационарной теплопроводности, приводящих к удовлетворительным для инженерной практики результатам. Эти методы условно можно разделить на две группы – аналитические и численные.

3.3 Огнестойкость строительных конструкций

Небольшой предел огнестойкости металлических конструкций затрудняет, а в отдельных случаях делает невозможным тушение пожаров и безопасную эвакуацию людей и материальных ценностей. Очень важно знать также предел огнестойкости различного рода технологического оборудования и металлических сооружений в период работы в экстремальных условиях повышенных температур.

Нет необходимости доказывать важность разработки экспресс-метода по определению предела огнестойкости металлических строительных конструкций, сооружений, оборудования.

Незащищенные металлические конструкции в процессе воздействия огня прогреваются равномерно по сечению. Предел их огнестойкости характеризуется временем прогрева металла до критической температуры, которая составляет в среднем для стали 500°С, для алюминиевых сплавов — 250°С.

3.4 Огнестойкость конструкций из дерева и полимеров

Если для оценки огнестойкости металлических и железобетонных конструкций существуют проверенные на практике методы, то для оценки огнестойкости конструкций из дерева и полимеров таких методов почти нет.

Сущность оценки огнестойкости деревянных конструкций заключается в определении времени горения, по истечении которого сечение конструкции уменьшится до критического значения. Вследствие уменьшения сечения напряжение увеличивается и при достижении предела прочности конструкция разрушается.

В последнее время все более широко применяются строительные конструкции из полимеров. К основному недостатку конструкций, изготовленных из этих материалов, можно отнести горючесть, выделение вредных веществ при горении и способность к размягчению в зоне повышенных температур. До настоящего времени в практике строительства отсутствуют расчетные методы предела огнестойкости конструкций из полимеров.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21 


Другие рефераты на тему «Безопасность жизнедеятельности и охрана труда»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы