Назначение источников бесперебойного питания

Глава 2. Типы источников бесперебойного питания и их структура

По принципу устройства ИБП можно отнести к двум типам.

Первый тип - это источники бесперебойного питания с режимом работы off­line (off-line - дословно «вне линии»). Принцип работы этого типа ИБП заключа­ется в питании нагрузки от питающей сети и быстром переключении на внутрен­нюю резервную схему при о

тключении питания или отклонении напряжения за до­пустимый диапазон. Время переключения обычно составляет величину порядка 4 . 12 мс, что вполне достаточно для большинства электроприемников с импульс­ными блоками питания.[2]

Второй тип - это источники бесперебойного питания с режимом работы on­line (on-line - дословно «на линии»). Эти устройства постоянно питают нагрузку и не имеют времени переключения. Наряду с резервированием электроснабжения они предназначены для обеспечения КЭ при его нарушениях в питающей сети и фильтрации помех, приходящих из питающей сети.

Достаточно часто в литературе по источникам бесперебойного питания упоминаются источники бесперебойного питания с режимом работы line-interactive (line-interactive UPS). Принцип их работы в значительной степени схож с принци­пом работы off-line, за исключением наличия так называемого «бустера» - устрой­ства ступенчатой стабилизации напряжения посредством коммутации обмоток входного трансформатора и использования основной схемы для заряда и подзаряда батареи, что обеспечивает более быстрый выход устройства на рабочий режим при переходе на питание от АБ. При этом время переключения на работу от АБ сокра­щается до 2 .4 мс.

В зависимости от знака и величины отклонения напряжения δU включается соответствующая комбинация «отпаек» (витков) трансформатора. Данное регулирование напряжения носит ступенчатый характер. Условные обозначения на рисунках и схемах здесь и далее соответствуют приложению 1. При отклонении напряжения U выше номинального значения бустер переключает отпайку в положе­ние - δU, снижая тем самым значение напряжения, поступающего в схему ИБП и далее к электроприемнику. При отклонении напряжения ниже номинального значе­ния бустер преключает отпайку в положение + δU. Такая схема бустера применяется редко, на смену ей пришла схема, аналогичная магнитному усилителю. В этой схеме имеются две встречно включенные обмотки, соответственно намагни­чивающие или размагничивающие сердечник бустера. Различие между ИБП off-line и line-interactive фактически стерлось, поскольку появились модели off-line с воз­можностью регулирования напряжения в нормальном режиме при помощи вве­денного в схему бустера. Единственно, что различает эти типы ИБП, - это форма выходного напряжения в автономном режиме. У ИБП типа off-line - это прямо­угольная форма и аппроксимация синусоиды ступеньками и трапецией, line-interac­tive имеет синусоидальное выходное напряжение.

Для питания технических средств с импульсными блоками питания форма вы­ходного напряжения ИБП значения не имеет. Cтруктура ИБП типа off-line и line-interactive.

В нормальном режиме ИБП пропускает питание на нагрузку, осуществляя по­давление высокочастотных помех и импульсов напряжения в LC-фильтре и ком­пенсируя отклонения напряжения бустером. Аккумуляторная батарея заряжается (подзаряжается) от зарядного устройства (выпрямителя). При отключении питания запускается инвертор, и переключатель переводит питание нагрузки на инвертор ИБП. Переключение осуществляется автоматически, и АБ будет питать нагрузку до момента восстановления напряжения на входе или до исчерпания её ёмкости. В схеме б при запуске инвертора отключается вход ИБП от линии питания с целью исключения подачи обратного напряжения со стороны нагрузки в питаю­щую линию.[3]

Инвертор входит в состав всех типов ИБП. Он представляет собой полупровод­никовый преобразователь постоянного напряжения АБ в переменное напряжение 220/380 В, поступающее на электроприемники (нагрузку). В современных ИБП ти­па line-interactive инвертор совмещает в себе функции как собственно инвертора, так и зарядного устройства.

В зависимости от модели ИБП инвертор формирует напряжение различной формы. Существуют упрощенные схемы инверторов, формирующие напряжение прямоугольной формы с бестоковыми паузами. Более совершенные схемы инверторов позволяют формировать напряжение, близкое к синусоидальной форме - аппроксимированное ступенями. Оба типа таких инверторов характерны для ИБП малой мощности и пригодны для работы с импульсными бло­ками питания. Инверторы ИБП типа line-interactive формируют напряжение сину­соидальной формы с низким содержанием гармоник (как правило, ко­эффициент искажения синусоидальности кривой напряжения КU < 3%). Такие инверторы пригодны для питания всех типов нагрузок - от импульсных блоков пита­ния до двигателей. Как правило, форма на­пряжения инвертора и КU указываются в каталожных данных ИБП.

Типичный диапазон мощностей ИБП типов off-line и line-interactive от 250 В А до 3 .5кВА.

Источники бесперебойного питания с режимом работы on-line выпускаются не­скольких типов (по принципам преобразо­вания энергии). Существуют четыре типа on-line ИБП:

· с одиночным преобразованием;

· с дельта-преобразованием;

· феррорезонансные ИБП;

· с двойным преобразованием.

Принцип одиночного преобразования (single conversion) заключается в следующем. В цепь между питающей сетью и нагрузкой включен дроссель, к выходу которого подключен инвертор. Инвертор в данной схеме является реверсивным и способен преобразовывать постоянное напряжение в переменное и наоборот. Поми­мо питания нагрузки в автономном режиме вторым назначением инвертора является регулирование напряжения на стороне нагрузки при отклонениях в питающей сети.

У ИБП данного типа КПД весьма высок и может достигать 96%. Од­нако имеются некоторые недостат­ки, например низкое значение входного коэффициента мощности (cosφ ≈ 0,6), при этом он меняется при изменении как напряжения се­ти, так и характера нагрузки.

Кро­ме того, при малых нагрузках дан­ные ИБП потребляют существен­ные реактивные токи, соизмеримые с номинальным током установки. Среди современных ИБП последних моделей подобный тип не встречается, поскольку на смену ему пришла технология дельта-пре­образования, являющаяся развитием технологиии одиночного преобразования.

Принцип дельта-преобразования (delta conversion) основан на применении в схеме ИБП так называемого дельта-трансформатора. Дельта-трансформа­тор представляет собой дроссель с обмоткой подмагничивания, которая позволяет управлять током в основной обмотке (аналогично принципу магнитного усилите­ля). В ИБП применяются два постоянно работающих инвертора. Один служит для управления дельта-трансформатором и, соответственно, регулировки входного тока и компенсации некоторых помех. Его мощность составляет 20% от мощности вто­рого инвертора, работающего на нагрузку. Второй инвертор, мощность которого определяет мощность ИБП, формирует выходную синусоиду, обеспечивая коррек­цию отклонений формы входного напряжения, а также питает нагрузки от батарей при работе ИБП в автономном режиме. Благодаря такой схеме обеспечивается воз­можность плавной загрузки входной сети при переходе из автономного режима ра­боты от батарей к работе от сети (режим on-line), а также высокая перегрузочная способность - до 200% в течение 1 мин.

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Программирование, компьютеры и кибернетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы