Проектирование и моделирование двигателя внутреннего сгорания

Угол конуса топливных струй обычно не превышает 20°. Для обеспечения полного охвата струями всего объема камеры сгорания и использования воздуха число сопловых отверстий должно быть ic = 360/20 = 18.

Величина проходного сечения сопловых отверстий fс определяется типом и размерами дизеля, существенно влияет на продолжительность и давление впрыскивания и ограничена условиями обеспечения хорош

его смесеобразования и тепловыделения. Поэтому при большом числе сопловых отверстий их диаметр должен быть небольшим. Изготовить точно отверстия малого диаметра трудно. Сложна также эксплуатация дизеля с распылителями, имеющими малый диаметр сопловых отверстий. В частности, интенсивнее происходит уменьшение проходного сечения сопловых отверстий из-за отложения на их поверхности кокса, поэтому целесообразно применение меньшего числа отверстий, чем это следует из условия полного охвата струями объема камеры сгорания. При этом для обеспечения полного сгорания топлива воздух приводится во вращательное движение тем более интенсивно, чем меньше число сопловых отверстий, так как в этом случае заряд за характерный промежуток времени, принимаемый обычно равным продолжительности впрыскивания топлива, должен повернуться на больший угол. Достигают этого применением винтового или тангенциального впускного каналов, а также экранированием впускного клапана или его седла (рис. 1, а-г).

Рис. 1 - Схемы, иллюстрирующие методы создания в процессе впуска вращательного движения заряда в цилиндре: а - тангенциальный впускной канал и эпюра изменения тангенциальной скорости заряда вдоль диаметра цилиндра; б - винтовой канал; в - клапан с экраном; г - экран на седле клапана; д - тангенциальные продувочные окна и эпюра изменения тангенциальной составляющей скорости, движения заряда вдоль диаметра цилиндра двухтактного дизеля

Каждое из конструктивных решений, предназначенных для четырехтактных двигателей, обеспечивает преимущественное поступление воздуха в нужном направлении (через определенную часть проходного сечения в клапане). Если ось потока, поступающего в этом направлении, не пересекает оси цилиндра, то в результате взаимодействия струй между собой и со стенками цилиндра создается вращательное движение всего заряда. Тот же эффект в случае двухтактных дизелей достигается тангенциальным направлением осей продувочных окон.

Для четырехтактных дизелей наиболее эффективно использование винтовых каналов. Отливка головки цилиндра при этом оказывается сложной.

Определенные трудности связаны с обеспечением идентичности формы и расположения каналов в процессе производства. При эксплуатации следует принимать меры к предупреждению накопления заметных отложений на стенках каналов.

При подходе поршня к ВМТ заряд из объема, расположенного над вытеснителем поршня, перетекает в камеру сгорания. Приведенный на рис. 2, а характер перетекания обусловлен взаимодействием сил вытеснения заряда, центробежных сил и сил трения.

Рис. 2 - Схемы перетекания и движения заряда в камере сгорания: а - перетекание вращающегося заряда из надпоршневого пространства в камеру сгорания; б - пространственное движение заряда в камере сгорания

При соответствующем соотношении между силами заряд перетекает из надпоршневого пространства в камеру сгорания как бы послойно непосредственно у кромки камеры сгорания и движется вдоль ее стенки. Сложение скоростей вращательного движения заряда, созданного при впуске, и вытеснения заряда при сжатии вызывает движение заряда. Процесс перетекания связан с определенными потерями энергии вращательного движения, которые тем больше, чем больше исходная энергия вращательного движения заряда при впуске и меньше отношение dк.с./D. В результате перетекания заряда в камеру, имеющую диаметр меньше диаметра цилиндра, скорость вращения заряда увеличивается. Из-за отмеченных потерь энергии это увеличение происходит в меньшей степени, чем следует из закона сохранения момента количества движения, однако ускорение вращения заряда больше при меньших значениях dк.с./D . Для рассматриваемого случая объемного смесеобразования ускорениe вращения заряда при вытеснении его в камеру сгорания невелико, так как диаметр камеры сгорания лишь незначительно меньше диаметра цилиндра.

Заряд в цилиндре и камере сгорания движется по сложным пространственным траекториям. Помимо особенностей втекания заряда в цилиндр через клапан (продувочные окна) на характер движения заряда влияют переменная скорость перемещения поршня и перетекание заряда из объема над вытеснителем поршня в камеру сгорания. В случае камер объемного смесеобразования наибольшее влияние на процессы смесеобразования оказывает тангенциальная составляющая скорости wt, направленная по касательной к окружности камеры сгорания. Другие составляющие малы, и их влияние невелико. В пределах камеры сгорания величина wt растет от центра к периферии, т. е. заряд вращается «как твердое тело». Над вытеснителем поршня wt убывает к периферии. Создание вращательного движения заряда при впуске приводит к уменьшению эффективного сечения клапана и снижению наполнения, причем тем большим, чем больше необходимая интенсивность вращения заряда. На рис. 5 приведена взаимосвязь между максимальным значением тангенциальной скорости wt max движения заряда и коэффициентом наполнения ηv. Увеличение wt max вызывает уменьшение ηv, более интенсивное при больших диаметрах камеры сгорания.

При большом отношении dк.с./D, учитывая малое ускорение вращения заряда при вытеснении его в камеру сгорания, чтобы избежать значительного падения наполнения, используют относительно большое число сопловых отверстий (6 - 10). В рассматриваемом случае наибольшее значение скорости движения заряда не превышает 12-15 м/с.

Смесеобразование в разделенных камерах сгорания. Разделенные камеры сгорания состоят из вспомогательной и основной полостей, соединенных горловиной. В настоящее время применяют в основном вихревые камеры сгорания и предкамеры. Наименование вспомогательной полости (камеры) здесь распространено на всю камеру сгорания. Принципиально различен для рассматриваемых камер сгорания характер движения заряда в дополнительной камере. В случае вихревой камеры сгорания ось соединительной горловины направлена по касательной к внутренней поверхности сферической или цилиндрической вихревой камеры сгорания. Поэтому в последней создается направленное вихревое движение заряда. Скорость перетекания заряда через горловину и близкая к ней максимальная скорость движения заряда в вихревой камере достигают 100-200 м/с в зависимости от относительной величины объема вихревой камеры сгорания (Vв.к / Vс) и относительной величины проходного сечения горловины (fг / Fп) (Fп- площадь поршня). Топливо впрыскивается через штифтовый распылитель в направлении.

Иногда для облегчения запуска применяют два сопловых отверстия, причем одно из них подает топливо в зону объема заряда с наибольшей температурой. Особенно велика доля топлива, подаваемого через это отверстие на пусковом режиме.

Страница:  1  2  3  4  5 


Другие рефераты на тему «Транспорт»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы