Нейроны как проводники электричества

Ток в аксоне переносится ионами: при инъекции тока в нервное волокно (например, в аксон омара) через микроэлектрод, инъецированные положительные заряды будут отталкивать другие катионы и притягивать анионы. Самый распространенный из небольших ионов внутри клетки — это калий, который, следовательно, переносит наибольшее количество тока через мембрану. Ток протекает в продольно направлении вдоль

аксона, и по мере продвижения часть его теряется благодаря перемещению ионов через мембрану. В мембране с низким сопротивлением и большой ионной проводимостью большая часть тока потеряется до того, как он успеет переместиться на сколь-нибудь значительное расстояние. При более высоком сопротивлении мембраны ток распространится вдоль аксона на большее расстояние, прежде чем рассеяться в окружающую среду.

Входное сопротивление и постоянная длины

Ток, протекающий через различные участки мембраны вдоль аксона на разном расстоянии от отводящего электрода. Толщина каждой стрелки приблизительно соответствует величине тока в каждом отдельно взятом участке. По закону Ома падение напряжения на данном расстоянии от электрода пропорционально мембранному току на том же расстоянии. Возникает два вопроса:

1) Каково будет изменение напряжения на электроде при данном количестве тока, проходящем через электрод?

2) Как далеко это изменение напряжения распространится вдоль волокна?

Чтобы ответить на эти вопросы, достаточно измерить изменение напряжения с помощью еще одного электрода, вставляемого в волокно на различном расстоянии от первого электрода. Изменение напряжения имеет наибольшее значение в месте инъекции тока и постепенно снижается по мере удаления от него.

Спад величины изменения напряжения носит экспоненциальный характер, так что потенциал (Vz) при данном значении расстояния x равен:

Максимальный потенциал V0 пропорционален величине инъецируемого тока. Коэффициент пропорциональности называется входным сопротивлением волокна, rinput. Он равен среднему сопротивлению, встречаемому ионным током, протекающим через аксоплазму и мембрану во внеклеточную среду. Таким образом, если величина инъецированного тока равна i, то

Постоянная длины волокна — это расстояние, на котором потенциал снижается в е раз (до 37% от начального значения). Эти два параметра, rinput , определяют величину изменения потенциала в ответ на инъекцию тока, а также расстояние, на которое это изменение распространится вдоль волокна.

Сопротивление мембраны и продольное сопротивление

Кабель можно представить себе в виде цепочки элементов сопротивления, rm и ri, соединенных последовательно. Такая цепочка получится, если вообразить себе аксон разрезанным на цилиндрические сегменты. Сопротивление мембраны rm соответствует сопротивлению стенки цилиндра; продольное сопротивление ri составляет внутреннее сопротивление вдоль участка аксоплазмы между серединой данного цилиндра и серединой следующего. Поскольку нерв обычно помещают в большое количество жидкости, то внеклеточное продольное сопротивление можно принять за ноль. Это допущение не всегда верно для центральной нервной системы, в которой аксоны и дендриты нейронов, а также глиальные клетки упакованы настолько плотно, что протекание внеклеточного тока ограничено. В случае рассматриваемого опыта такое допущение справедливо и служит для максимального упрощения математических выражений. Длина цилиндрических сегментов может быть любой, однако rm и ri (принято указывать из расчета на участок аксона длиной 1 см. Сопротивление мембраны rm выражается в Омах, умноженных на сантиметр (Ом см). Величина может показаться странной, но она объясняется тем, что сопротивление убывает с увеличением длины волокна, а значит, с увеличением количества каналов, через которые теряется ток. Таким образом, сопротивление данного участка мембраны аксона в Омах равняется сопротивлению сантиметрового участка (rm в Ом см), деленному на длину данного участка (в см). Постоянная ri; выражается, как и следовало ожидать, в Омах, деленных на сантиметр (Ом/см).

Расчет сопротивления мембраны и внутреннего сопротивления

Постоянная длины волокна зависит как от rm, так и от ri:

Величина измеряется в сантиметрах и отвечает интуитивному представлению о том, что расстояние, на которое распространяется изменение потенциала, должно возрастать с увеличением сопротивления мембраны (которое препятствует потере тока за счет утечки) и, напротив, должно снижаться с увеличением внутреннего сопротивления (которое затрудняет протекание тока вдоль содержимого волокна).

Точно так же входное сопротивление зависит от обоих параметров:

Выражение измеряется в должных единицах (Ом) и подразумевает возрастание входного сопротивления с увеличением как одного, так и другого параметров. Фактор 0,5 объясняется тем, что аксон простирается в двух направлениях от места инъекции тока. Каждая половинка обладает входным сопротивлением, равным (rmri) 0,5.

Зная эти выражения, можно получить параметры сопротивления мембраны и аксоплазмы из опытов, подобных показанному. Измерив экспериментально rinput , можно путем простых преобразований получить выражения для rm и ri:

Удельное сопротивление

Рассчитанные значения rm и ri характеризуют сопротивление цилиндрического сегмента аксона длиной 1 см. Однако, они не предоставляют точной информации о сопротивлении самой мембраны, а также аксоплазмы, поскольку последние зависят от размера волокна. При равных прочих условиях, сантиметровый отрезок тонкого волокна должен обладать более высоким сопротивлением мембраны, чем отрезок более толстого волокна той же длины, поскольку у тонкого волокна площадь поверхности мембраны меньше, чем у толстого. С другой стороны, если в мембране тонкого волокна плотность каналов значительно выше, то сопротивление сантиметрового участка его мембраны может в результате оказаться таким же, как и у толстого волокна. Для того, чтобы сопоставить мембраны между собой, нужно знать величину удельного сопротивления, которое равно сопротивлению мембраны площадью 1 см2 и измеряется в Ом см2. Отрезок аксона длиной 1 см и радиусом о обладает площадью поверхности 2тго см2. Сопротивление мембраны rm такого отрезка можно получить, разделив Rm на площадь мембраны: rm = Rm/(2а). Преобразовав выражение, получим

Величина Rm важна тем, что не зависит от геометрических свойств мембраны и потому позволяет сравнивать между собой мембраны самых разных размеров и форм.

В большинстве типов нейронов Rm определяется главным образом калиевой и хлорной проницаемостями мембраны в покое, величина которых зависит от типа клетки. Среднее значение Rm, полученное Ходжкиным и Раштоном на аксоне омара, составляет приблизительно 2000 Ом · см2; данные, полученные в других препаратах, варьировали в диапазоне от 1 000 Ом · см2 в мембранах с большим количеством каналов до 50000 Ом см2 в мембранах со сравнительно небольшим числом каналов.

Страница:  1  2  3 


Другие рефераты на тему «Биология и естествознание»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы