Модели оценки опционов

Модель предполагает, что будущие цены акции(актива) подчиняются логарифмически нормальному (натуральный логарифм этой величины имеет нормальное распределение) распределению вероятности. Волантильность или среднеквадратическое отклонение доходности акции(актива) вычисляется на основе исторических данных. Чем большей волантильностью характеризуется акция, тем выше вероятность того, что в момент о

кончания действия опциона цена будет сильно отличаться от сегодняшней. Чтобы компенсировать подобный риск, продавец должен получить больше за опцион на такую акцию, а покупатель больше заплатить за возможность использования опциона.

Вычисленная справедливая рыночная стоимость опциона может как совпадать, так и не совпадать с текущим значением цены.

Концептуально модель Блека – Шоулза очень проста:

Цена опциона колл = ожидаемая будущая цена за акцию – ожидаемая стоимость исполнения опциона.

Однако практическую ценность имеют поправки, учёт которых может существенно изменить цену. Блек и Шоулз дополнили это уравнение следующими поправками:

1. на вероятность разброса будущей цены акции(актива);

2. на чистое значение стоимости исполнения;

3. на вероятность того, что цена исполнения может быть выше, чем цена базисного актива;

4. на тот факт, что часть любого платежа может быть получена по безрисковой ставке.

Стоимость опциона по формуле Блека – Шоулза:

C = SN(h1) – (r(-T) (степень)) KN(h1 – oT),

h1= (ln (S\K) +(ln r +(o 2 (степень)\2)) T)\ o T,

С – теоретическая цена опциона «колл», которая также называется премией;

N(h1) – накопленная вероятность (функция распределения) при нормальном распределении для h1;

K – цена исполнения;

S – сегодняшняя цена акции;

r=1+rf (степень) – ставка процента по безрисковым вложениям;

T – срок до окончания действия опциона;

о – среднеквадратическое отклонение доходности обыкновенных акций(актива) или изменчивость(волантильность) доходности базисного актива.

Пример расчёта цены европейского опциона «колл» по формуле Блека – Шоулза

S = 41.50 $ – сегодняшняя цена акции;

K= 40.00 $ – страйк (цена исполнения);

T= 0.4 – время до исполнения опциона;

r=1+rf(степень) = 1.05 – ставка процента +1;

o = 0.1124 – среднеквадратическое отклонение доходности акций (волантильность доходности акций)

S/K = 41.50 $/40 $ =1.0375;

o2 (степень)/2= 0.0063;

ln r = ln 1.05=0.0488;

ln S\K=ln 1.0375= 0.0368;

o T = 0.0711;

r-T(степень) = 0.9807.

Нам необходимо найти h1

h1 = [ln (S/K) +(ln(r) +(o2 (степень)/2)) Т]/ о Т =(0.0368 +(0.0488 +0.0063)*0.4)/0.0711 = 0.8277;

Тогда

h1 – o T = 0.8277 – 0.0711 = 0.7566;

Стоимость опциона равна:

C = SN(h1) – r – T(степень) KN (h1 – o T)= 41.50 $*N (0.8277) –

– 0.9807 (40.00 $) N (0.7566)= 41.50 $(0.7967) – 0.9807 (40.00 $) (0.7754) = 33.06 $ – 30.42 $ = 2.64 $

Желание инвесторов взять на себя риск не влияет на стоимость опциона.

Не оказывает влияние и ожидаемая доходность акций. Стоимость опциона возрастает с ростом цены акции (S). Она падает при снижении цены исполнения (К), которая в свою очередь зависит от процентной ставки и срока до окончания действия опциона; и стоимость возрастает при умножении количества периодов до срока исполнения на показатель изменчивости цены акции (o Т).

Опцион всегда стоит больше разницы между текущей ценой и ценой исполнения. Опцион «колл» со страйком 95 долларов на акцию в 100 долларов всегда будет стоить больше 5 – ти долларов. Эта разница существует потому, что будущее значение базисного актива может быть как больше, так и меньше 100 долларов. Если базисный актив вырастет до 105 – ти долларов, то премия за «колл» поднимется выше 10 – ти долларов. Плата сверх разницы между страйком и базисным активом – это оценка вероятности более высокой цены.

Чтобы узнать стоимость опциона «пут» с той же ценой исполнения, можно использовать соотношение:

Стоимость опциона «пут» = стоимость опциона «колл» + приведённая стоимость (цены исполнения) – цена акции

Побочным продуктом модели Блека – Шоулза является вычисление числа дельта. Данный показатель даёт представление о том, насколько сдвинется цена опциона при небольшом изменении цены базисного актива. Например, опцион с дельтой 0.5 вырастет на полцента при росте на 1 цент базисного актива. Ярко выраженный опцион «вне денег» имеет дельту, близкую к нулю. Дельта ярко выраженного опциона «в деньгах» близка к единице.

Формула для вычисления дельты европейского опциона «колл» на бездивидендную акцию следующая:

Delta = N(h1)

«Колл» дельта является позитивной, «пут» дельта – негативной. Так как цена опциона «пут» и цена базисного актива являются противоположно зависимыми, «пут» дельту можно вычислить так:

Дельта опциона «пут» = дельта опциона «колл» – 1.

Дельту часто называют нормой хеджирования. Если имеется портфель коротких опционов, то при умножении их числа на дельту получится число необходимых для создания безрисковой позиции акций. Стоимость такого портфеля будет оставаться стабильной при незначительных колебаниях цен.

В таком дельта – нейтральном портфеле рост цены акций будет компенсировать убыток, вызванный ростом стоимости проданных опционов «колл», и наоборот.

В модели Блека – Шоулза есть слабые места, связанные с логарифмически нормальным распределением при определении будущей цены акции. При этом модель дисконтирует цены с низкими вероятностями. Но более низкая будущая цена в сочетании с более низкой вероятностью может оказаться действительной будущей ценой. Тем не менее на сегодняшний день модель Блека – Шоулза признана лучшей моделью для оценки опционов и применяется наиболее широко.

3. Применение теории оценки стоимости опционов

3.1 Использование модели Блека–Шоулза

Модель Блека–Шоулза применяется прежде всего для следующих целей:

1. поиска недооценённых опционов, чтобы их продать или переоценённых, чтобы их купить;

2. хеджирования портфеля с целью понижения риска (при низкой волантильности);

3. оценка рыночных предпосылок будущей волантильности акций.

Трейдеры используют эту модель для сравнения текущих цен на опционы с расчётными. Когда расчётное значение отличается от текущего, они прибегают к арбитражу на их разнице в том случае, когда она больше, чем стоимость заключения сделки. Блек и Шоулз не рассматривали возможности арбитража в своей модели. В то же время известно, что она применяется с целью нахождения, и, следовательно, ограничения возможностей арбитража на рынке. Таким образом, можно говорить о том, что модель действует на практике.

Другим распространённым способом использования модели является вычисление позиций хеджирования для портфеля акций. Поскольку флуктуации цен на опционы происходят в соответствии с ценой акций, можно продать опционы, чтобы уравновесить возможные потери по ней. Модель

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Банковское, биржевое дело и страхование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2019 - www.refsru.com - рефераты, курсовые и дипломные работы