Введение в теорию атома

()

Уравнение Шрёдингера для атома водорода приведено к компактному операторному виду, и здесь уже возможно его решение по методу Фурье разделения переменных.

Решения содержат радиальный и угловой сомножители:

8.18. Схема разделения переменных та же, что и в уравнении Лапласа (по правилу «оператор аддитивен - решение мультипликативно». Есть сомножитель радиальный, и есть угловой, и частные решения углового уравнения – сферические функции. Разделим переменные:

Получается система (8.29) из двух дифференциальных уравнений: (8.29.1) - уравнение Лежандра для сферических гармоник (с точностью до постоянной совпадающее с уравнением для квадрата модуля момента импульса !), и (8.29.2) - чисто радиальное:

. (8.29)8.19. Итоги.

8.19.1. Гамильтониан для электрона в водородоподобном ионе (атоме):

(8.30)

8.19.2. Лапласиан в сферических переменных:

+. (8.31)

8.19.3. Уравнение Шрёдингера с потенциальной функцией V(r) для одноэлектронных состояний:

. (8.32)

Потенциальная функция V(r) имеет вид:

1) у атома H V(r) = -e2/r,

2) у водородоподобного иона V(r) =-Ze2/r.

Уравнение Шрёдингера в общем виде для водородоподобного иона приобретает вид

. (8.33)

Оно разделяется на систему из трёх дифференциальных уравнений:

. (8.34)

От потенциала зависит лишь радиальная, но не угловая часть уравнения Шрёдингера.

Система этих уравнений даёт полное описание атомных орбиталей - одноэлектронных волновых функций в простейшем случае – в водородоподобном ионе. Первое уравнение совпадает с уравнением Шрёдингера для плоского ротатора, оно описывает свойства вращения вокруг аппликаты (мы выполняли преобразования так, что это ось z). Решения этого уравнения нумеруются квантовым числом

. (8.35)

1) Первое уравнение (как и в плоском ротаторе) описывает компоненту момента импульса вдоль оси вращения, определяя проекцию вектора момента с помощью квантового числа m.

2) Второе и первое уравнения вместе(до разделения угловых переменных) проистекают из одного общего дифференциального уравнения Лежандра

(8.36)

из которого следует правило квантования модуля момента импульса с помощью числа l :

(8.37)

Уравнение (E) предписывает условие

. (8.38)

и возникает следствие и магнитное квантовое число m ограничено пределами . Всякому квантовому числу l, таким образом, отвечает 2l+1 состояние.

3) Радиальное уравнение приводит к квантованию энергии электронного уровня. Правило квантования одноэлектронных уровней – энергетический спектр водородоподобного иона выражается формулой Бора:

или в атомных единицах:

.

В итоге каждую из атомных орбиталей в атоме водорода можно быть охарактеризовать (пронумеровать) тройкой квантовых чисел . Для многих целей, связанных просто с перечислением АО, этих чисел вполне достаточно для их исчерпывающей характеристики, и, поэтому вместо символа волновой функции, достаточно просто перечислить тройку квантовых чисел индексы в скобках или в виде индексов. Этот способ записи эквивалентен волновой функции и такой же точно общий символ АО.

8.20.1. Квантовые числа, интервалы возможных значений.

8.20.2. Водородоподобные атомные орбитали.

Угловые компоненты АО и распределение вероятностей.

Полярные функции азимута Qlm(J) и функций широты F|m|(j)

Alm(q)

ql,m(J)

A(j)

F|m|(j)

(1/2) ½

1

(1/2p) ½

1

(3/2) ½

cosJ

(1/2p) ½

1

(3/4) ½

sinJ

(1/2p) ½

exp(±ij)

(5/8) ½

3×cos2J-1

(1/2p) ½

1

(15/16) ½

sin2J

(1/2p) ½

exp(±ij)

(15/16) ½

sin2J

(1/2p) ½

exp(±i2j)

 

5×cos2J -3×cosJ

(1/2p) ½

1

 

(5×cos2J -1)×sinJ

(1/2p) ½

exp(±ij)

 

sin2J×cosJ

(1/2p) ½

exp(±i2j)

 

sin3J

(1/2p) ½

exp(±i3j)

Страница:  1  2  3  4 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы