Инструментальные методы анализа веществ

Любой процесс распределения вещества между двумя фазами характеризуют коэффициентом распределения D. Величина D отношением cs/c0, где ст и с0 – концентрации вещества в подвижной и неподвижной фазах соответственно. Коэффициент распределения связан с хроматографическими параметрами.

Характеристикой удерживания является также коэффициент емкости k', определяемый как отношение массы вещества в

неподвижной фазе к массе вещества в подвижной фазе: k' = mн/mп. Коэффициент емкости показывает, во сколько раз вещество дольше находится в неподвижной фазе, чем в подвижной. Величину k' вычисляют из экспериментальных данных по формуле:

. (4.5)

Важнейшим параметром хроматографического разделения является эффективность хроматографической колонки, количественной мерой которой служат высота Н, эквивалентная теоретической тарелке, и число теоретических тарелок N.

Теоретическая тарелка – это гипотетическая зона, высота которой соответствует достижению равновесия между двумя фазами. Чем больше теоретических тарелок в колонке, т.е. чем большее число раз устанавливается равновесие, тем эффективнее колонка. Число теоретических тарелок легко рассчитать непосредственно из хроматограммы, сравнивая ширину пика w и время пребывания tR компонента в колонке [13]:

. (4.6)

Определив N и зная длину колонки L, легко вычислить Н:

. (4.7)

Эффективность хроматографической колонки также характеризует симметричность соответствующего пика: чем более симметричен пик, тем более эффективной является колонка. Численно симметричность выражают через коэффициент симметрии KS, который может быть определен по формуле:

, (4.8)

где b0.05 – ширина пика на одной двадцатой высоты пика; А – расстояние между перпендикуляром, опущенным из максимума пика, и передней границей пика на одной двадцатой высоты пика.

Для оценки воспроизводимости хроматографического анализа используют относительное стандартное отклонение (RSD), характеризующее рассеяние результатов в выборочной совокупности:

, (4.9)

где n – количество параллельных хроматограмм; х – содержание компонента в пробе, определенное путем расчета площади или высоты соответствующего пика на хроматограмме; – среднее значение содержания компонента, рассчитанное на основании данных параллельных хроматограмм; s2 – дисперсия полученных результатов.

Результаты хроматографического анализа считаются вероятными, если выполняются условия пригодности хроматографической системы:

- число теоретических тарелок, рассчитанное по соответствующему пику, должно быть не менее требуемого значения;

- коэффициент разделения соответствующих пиков должен быть не менее требуемого значения;

- относительное стандартное отклонение, рассчитанное для высоты или площади соответствующего пика, должно быть не более требуемого значения;

- коэффициент симметрии соответствующего пика должен быть в требуемых пределах.

4.2 Задача: рассчитать методом внутреннего стандарта содержание анализируемого вещества в пробе (в г и %), если при хроматографировании получены следующие данные: при калибровке: qВ=0,00735, SВ =6,38 смІ, qСТ=0,00869 г, SСТ=8,47 смІ, при анализе: SВ=9,38 смІ, VВ=47 ммі, qСТ=0,00465 г, SСТ=4,51 смІ

SСТ/SВ = k•(qСТ/ qВ);

k = (SСТ/SВ)/(qСТ/ qВ) = (8,47/6,38)/(0,00869/0,00735) = 1,123;

qВ = k•qСТ•(SВ/SСТ) = 1,123•0,00465•(9,38/4,51) = 0,01086 г.

x, % = k•r•(SВ/SСТ)•100;

r = qСТ/ qВ = 0,00465/0,01086 = 0,4282;

x, % = 1,123•0,4282•(9,38/4,51) = 100%.

5. Фотометрическое титрование

5.1 Фотометрическое титрование. Сущность и условия титрования. Кривые титрования. Преимущества фотометрического титрования в сравнении с прямой фотометрией

Фотометрические и спектрофотометрические измерения можно использовать для фиксирования конечной точки титрования. Конечная точка прямого фотометрического титрования появляется в результате изменения концентрации реагента и продукта реакции или обоих одновременно; очевидно, по меньшей мере, одно из этих веществ должно поглощать свет при выбранной длине волны. Косвенный метод основан на зависимости оптической плотности индикатора от объема титранта.

Рис. 5.1 Типичные кривые фотометрического титрования. Молярные коэффициенты поглощения определяемого вещества, продукта реакции и титранта обозначены символами еs, еp, еt соответственно

Кривые титрования. Кривая фотометрического титрования представляет собой график зависимости исправленной оптической плотности от объема титранта. Если условия выбраны правильно, кривая состоит из двух прямолинейных участков с разным наклоном: один из них соответствует началу титрования, другой – продолжению за точкой эквивалентности. Вблизи точки эквивалентности часто наблюдается заметный перегиб; конечной точкой считают точку пересечения прямолинейных отрезков после экстраполяции.

На рис. 5.1 приведены некоторые типичные кривые титрования. При титровании непоглощающих веществ окрашенным титрантом с образованием бесцветных продуктов в начале титрования получается горизонтальная линия; за точкой эквивалентности оптическая плотность быстро растет (рис. 5.1, кривая а). При образовании окрашенных продуктов из бесцветных реагентов, наоборот, сначала наблюдается линейный рост оптической плотности, а затем появляется область, в которой поглощение не зависит от объема титранта (рис. 5.1, кривая б). В зависимости от спектральных характеристик реагентов и продуктов реакции возможны также кривые других форм (рис. 5.1).

Чтобы конечная точка фотометрического титрования была достаточно отчетливой, поглощающая система или системы должны подчиняться закону Бера; в противном случае нарушается линейность отрезков кривой титрования, необходимая для экстраполяции. Необходимо, далее, ввести поправку на изменение объема путем умножения оптической плотности на множитель (V+v)/V, где V – исходный объем раствора, a v – объем добавленного титранта.

Фотометрическое титрование часто обеспечивает более точные результаты, чем прямой фотометрический анализ, так как для определения конечной точки объединяются данные нескольких измерений. Кроме того, при фотометрическом титровании присутствием других поглощающих веществ можно пренебречь, поскольку измеряется только изменение оптической плотности.

5.2 Задача: навеску дихромата калия массой 0,0284 г растворили в мерной колбе вместимостью 100,00 смі. Оптическая плотность полученного раствора при лmax=430 нм равна 0,728 при толщине поглощённого слоя 1 см. вычислить молярную и процентную концентрацию, молярный и удельный коэффициенты поглощения этого раствора

Страница:  1  2  3  4  5 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы