Автоматизация теплового пункта гражданского здания

Такая архитектура системы управления зданием позволяет:

- в автоматическом режиме управлять работой систем вентиляции, кондиционирования, отопления, освещения и др., обеспечивая в каждом помещении наиболее комфортные условия для персонала по температуре, влажности воздуха и освещенности;

- получать объективную информацию о работе и состоянии всех систем и своевременно сообщать диспетчер

ам о необходимости вызова специалистов по сервисному обслуживанию в случае отклонения параметров любой из систем от штатных показателей;

- контролируя максимально возможное число параметров оборудования, точек контроля в здании и показателей загруженности систем, перераспределять энергоресурсы между системами, обеспечивая их эффективное использование и экономию энергоресурсов;

- ввести оптимальный режим управления инженерным оборудованием с целью сокращения затрат на использование энергоресурсов, потребляемых инженерными системами здания (горячей и холодной воды, тепла, электроэнергии, чистого воздуха и т.д.);

- обеспечить централизованный контроль и управление при нештатных ситуациях:

- осуществлять своевременную локализацию аварийных ситуаций;

- оперативно принимать решения при аварийных и нештатных ситуациях (пожаре, затоплении, утечках воды, газа, несанкционированном доступе в охраняемые помещения);

- ввести объективный анализ работы оборудования, действий инженерных служб и подразделений охраны при нештатных ситуациях на основе информации автоматизированных баз данных, документирующих все принятые решения и многое другое.

Используя открытые протоколы обмена данными между различными системами здания, структурированные кабельные и LAN/WAN сети, сетевые контроллеры системы управления зданием позволяют создать инженерную инфраструктуру, которая имеет высокую степень открытости для наращивания и быстрой модернизации инженерных систем. В максимальной конфигурации система управления зданием сможет осуществлять централизованный мониторинг оборудования и управление следующими инженерно-техническими системами и комплексами:

Система электрораспределения:

- системы гарантированного и бесперебойного электроснабжения;

- системы освещения (комнатные, коридорные, фасадные и аварийные);

- система вентиляции;

- система отопления;

- система горячего и холодного водоснабжения;

- системы канализации и дренажные системы;

- система оперативной связи и видеоконференций;

- система воздухоподготовки, очистки и увлажнения;

- система холодоснабжения

- система кондиционирования и климат-контроля;

- система контроля загазованности.

Транспортные системы:

- системы учета и контроля расходования ресурсов;

- система охранно-пожарной сигнализации;

- система противопожарной защиты и пожаротушения;

- система охранного видеонаблюдения;

- система контроля и управления доступом;

- система управления паркингом;

- метереологическая система;

- система часофикации.

Применение системы управления зданием удорожает общую стоимость инженерии здания на 20-50 долларов США на 1 квадратный метр общей площади здания и зависит от размеров здания и технических требований к работе инженерных систем. Для зданий площадью 15 000 кв. м. и более удорожание составляет $20 на 1 кв. м. Для зданий с меньшей площадью эта цифра увеличивается. Все приведенные оценки сделаны без учета стоимости самого инженерного оборудования, которое использует открытые протоколы обмена данными и будет установлено в здании.

В то же время, применение BMS и ресурсосберегающего оборудования позволяет:

- вписаться в ограниченные энергомощности и исключить расходы на строительство дополнительной подстанции и прокладку силовых кабелей, особенно в центральных частях города, где муниципальные власти ограничивают владельцев зданий в объемах энергопотребления;

- сократить расходы на дорогостоящие ремонт и замену вышедшего из строя оборудования, продлить срок его службы за счет постоянного мониторинга параметров инженерных систем и своевременного проведения наладочных работ при выявлении отклонений параметров систем от нормы;

- снизить на 20% ежемесячные коммунальные платежи (вода, тепло, канализация, электроснабжение) за счет работы систем в наиболее экономном режиме и автоматического перевода инженерии здания из дневного в ночной режим работы (когда автоматически отключается освещение, кондиционеры, снижается температура отопительных батарей в комнатах, персонал которых покинул здание);

- сократить в 3 раза расходы на службу эксплуатации, поскольку большинство систем будет работать в автоматическом режиме, что снижает расходы на ремонт или замену дорогостоящего оборудования, вышедшего из строя по причине халатности персонала или ошибок оператора;

- исключить расходы на интеллектуальную надстройку систем здания при расширении числа инженерных систем и их модернизации за счет использования возможностей открытой архитектуры системы управления здания;

- снизить заболеваемость сотрудников за счет создания комфортных условий для их работы и, как следствие, сократить расходы на реабилитацию сотрудников и страховые выплаты.

Помимо значительного снижения численности персонала, обслуживающего инженерные системы здания, за счет максимальной автоматизации процессов управления и контроля работы систем жизнеобеспечения, владелец интеллектуального здания может рассчитывать на получение следующих выгод:

- увеличится в 2 раза срок бесперебойной работы инженерных систем за счет автоматического поддержания оптимальных условий работы оборудования;

- при возникновении аварийных ситуаций операторы, осуществляющие контроль работы оборудования, будут иметь полную информацию о работе каждой системы и рекомендации BMS по выбору оптимального и наиболее безопасного выхода из ситуации. При этом большая часть задач будет решать автоматика здания;

- при появлении сбоев в работе оборудования BMS будет своевременно информировать службы эксплуатации, отвечающие за работу данного оборудования, а также главную службу эксплуатации и смежные подразделения. Иными словами, если оператор системы электроснабжения уснул на рабочем месте и BMS не видит его реакции на тревожные сообщения, то она отправляет тревогу главному диспетчеру;

- расходы на техническое обслуживание оборудования и инженерных систем будут минимальными; поскольку мониторинг параметров всех систем осуществляется круглосуточно и при своевременном вызове сервисных бригад, случаи серьезного ремонта оборудования будут исключены;

- все действия автоматики и операторов систем протоколируются BMS, поэтому вероятность возникновения ситуаций коллективной безответственности за остановку или сбой в работе оборудования близка к нулю.

1.2 Анализ технологических схем тепловых пунктов гражданских зданий

Тепловой пункт (ТП) — это комплекс устройств, расположенный в обособленном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя и распределение теплоносителя по типам потребления.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы