389 Единое электродинамическое поле
Таким образом, имеем очевидное обобщение и серьезное развитие представлений классической электродинамики. В частности, показано, что в Природе, так же как и в случае ЭМ поля, не может быть электрического, магнитного или другой составляющей единого электродинамическогополя с одной полевой компонентой. Структура обсуждаемых составляющих единого электродинамического поля из двух векторных взаимно
ортогональных полевых компонент – это объективно необходимый способ их реального существования, принципиальная и единственная возможность распространения конкретной составляющей в виде потока соответствующей физической величины, в случае динамических полей – посредством поперечных волн.
Форма представленных систем уравнений (1) – (4) говорит о существовании волновых уравнений как для компонент ЭМ поля  и
и  , так и для компонент поля ЭМ векторного потенциала
, так и для компонент поля ЭМ векторного потенциала  и
и  . В этом можно убедиться, взяв, как обычно, ротор от одного из роторных уравнений любой системы, и после чего подставить в него другое роторное уравнение той же системы. В качестве иллюстрации получим, например, для системы (2) волновое уравнение относительно
. В этом можно убедиться, взяв, как обычно, ротор от одного из роторных уравнений любой системы, и после чего подставить в него другое роторное уравнение той же системы. В качестве иллюстрации получим, например, для системы (2) волновое уравнение относительно  :
: 
 .
. 
Здесь, согласно (2c),  ,
,  - оператор Лапласа, а
- оператор Лапласа, а  - фазовая скорость поля волны в отсутствие поглощения. Следовательно, указанные волновые уравнения описывают волны конкретной составляющей единого электродинамического поля в виде одной из парных комбинаций этих четырех волновых уравнений. В итоге возникает физически очевидный вопрос, что это за волны, и каковы характеристики распространения таких волн?
- фазовая скорость поля волны в отсутствие поглощения. Следовательно, указанные волновые уравнения описывают волны конкретной составляющей единого электродинамического поля в виде одной из парных комбинаций этих четырех волновых уравнений. В итоге возникает физически очевидный вопрос, что это за волны, и каковы характеристики распространения таких волн? 
Ввиду того, что уравнения систем (1) и (2) математически структурно тождественны, а волновые решения уравнений (1) широко известны [6], то далее анализ характеристик распространения составляющих единого электродинамическогополя, например, в виде плоских волн в однородных изотропных материальных средах проведем, прежде всего, для уравнений (3) электрического поля и уравнений (4) магнитного поля. Их необычные структуры между собой также математически тождественны, а волновые решения систем этих уравнений, как будет показано ниже, физически весьма нетривиальны.
Итак, рассмотрим волновой пакет плоской линейно поляризованной электрической волны, распространяющейся вдоль оси 0X с компонентами  и
и  для системы (3) либо магнитной волны с компонентами
для системы (3) либо магнитной волны с компонентами  и
и  для системы (4), которые представим комплексными спектральными интегралами. Здесь, согласно соотношениям (5с) и (5d), учтена функциональная взаимосвязь обсуждаемых волн в виде единого процесса и взаимная коллинеарность векторов
для системы (4), которые представим комплексными спектральными интегралами. Здесь, согласно соотношениям (5с) и (5d), учтена функциональная взаимосвязь обсуждаемых волн в виде единого процесса и взаимная коллинеарность векторов  и
и  (эти векторы антипараллельны),
(эти векторы антипараллельны),  и
и  компонент полей. Тогда, например, для уравнений электрического поля указанные интегралы имеют вид:
компонент полей. Тогда, например, для уравнений электрического поля указанные интегралы имеют вид: 
 и
и  ,
, 
где  и
и  - комплексные амплитуды.
- комплексные амплитуды. 
Подставляя их в уравнения (3a) и (3c), приходим к соотношениям  и
и  . Соответствующая подстановка интегралов
. Соответствующая подстановка интегралов  и
и  в уравнения (4а) и (4c) дает
в уравнения (4а) и (4c) дает  и
и  . В итоге для обеих систем получаем общее для них выражение:
. В итоге для обеих систем получаем общее для них выражение:  
 
В конкретном случае среды идеального диэлектрика ( ) с учетом формулы
) с учетом формулы  из
из  следует для обеих систем обычное дисперсионное соотношение
следует для обеих систем обычное дисперсионное соотношение  [6], описывающее однородные плоские волны электрического или магнитного полей. При этом связь комплексных амплитуд компонент указанных волновых полей имеет специфический вид:
[6], описывающее однородные плоские волны электрического или магнитного полей. При этом связь комплексных амплитуд компонент указанных волновых полей имеет специфический вид: 
 в системе (3) и
в системе (3) и 
 в системе (4),
в системе (4), 
то есть при распространении в диэлектрической среде компоненты поля сдвинуты между собой по фазе на π/2. Специфика здесь в том, что характер поведения компонент поля такой волны в любой точке пространства аналогичен кинематическим параметрам движения (смещение и скорость) классической частицы в точке устойчивого равновесия поля потенциальных сил. Конечно, математически данный результат очевидно тривиален, поскольку компоненты ЭМ поля и поля ЭМ векторного потенциала связаны между собой посредством производной по времени (см. соотношения (5c) и (5d)). Однако с физической точки зрения этот результат весьма нетривиален и, безусловно, интересен и наводит на размышления.
Для проводящей среды ( ) в асимптотике металлов (
) в асимптотике металлов ( ) дисперсионное соотношение систем уравнений (3) и (4) имеет обычный в таком случае вид
) дисперсионное соотношение систем уравнений (3) и (4) имеет обычный в таком случае вид  , где
, где  [6]. Тогда, например, для уравнений (3) связь комплексных амплитуд компонент иметь вид
[6]. Тогда, например, для уравнений (3) связь комплексных амплитуд компонент иметь вид  и волновые решения запишутся в виде экспоненциально затухающих в пространстве плоских волн со сдвигом начальной фазы между компонентами поля на π/4:
и волновые решения запишутся в виде экспоненциально затухающих в пространстве плоских волн со сдвигом начальной фазы между компонентами поля на π/4: 
 , (10)
, (10) 
 .
. 
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода

 Скачать реферат
 Скачать реферат