К вопросу о Единой теории полей и взаимодействий

можно определить экспериментальное значение угла Вайнберга: sin2thetaWneaeq0.230+0.003. Электромагнитный ток в секторе лептонов http://nuclphys.sinp.msu.ru/simages/nu.gifee- имеет правильный вид

http://nuclphys.sinp.msu.ru/zgauge/images/i7_21.gif

Итак, слабое и электромагнитное взаимодействия объединены в единое электрослабое взаимодействие в достаточно простой модели для лептонов http://nuclphys.sinp.msu.ru/simages/nu.gifee-. Она немедленно обобщается на весь лептонный и кварковый секторы. Перейти от феноменологической модели к теории электрослабых взаимодействий оказывается возможным в рамках теории калибровочных полей.

В физике элементарных частиц электрослабое взаимодействие является общим описанием двух из четырех фундаментальных взаимодействий: слабого взаимодействия и электромагнитного взаимодействия. Хотя эти два взаимодействия очень различаются на обычных низких энергиях, в теории они представляются как два разных проявления одного взаимодействия. При энергиях, выше энергии объединения (порядка 102 ГэВ), они соединяются в единое электрослабое взаимодействие.

Теория электрослабого взаимодействия представляет собой созданную в конце 60-х годов 20-го века С. Вайнбергом, Ш. Глэшоу, А. Саламом единую (объединенную) теорию слабого и электромагнитного взаимодействий кварков и лептонов, осуществляемых посредством обмена четырьмя частицами — безмассовыми фотонами (электромагнитное взаимодействие) и тяжелыми промежуточными векторными бозонами (слабое взаимодействие).

Математически объединение осуществляется при помощи калибровочной группы SU(2) × U(1). Соответствующие калибровочные бозоны - фотон (электромагнитное взаимодействие) и W и Z бозоны (слабое взаимодействие). В Стандартной модели калибровочные бозоны слабого взаимодействия получают массу из-за спонтанного нарушения электрослабой симметрии от SU(2) × U(1)Y к U(1)em, вызванного механизмом Хиггса . Нижние индексы используются, чтобы показать, что существуют различные варианты U(1); генератор U(1)em дается выражением Q = Y/2 + I3, где Y - генератор U(1)Y (названный гиперзаряд), а I3 - один из генераторов SU(2) (компонент изоспина). Различие между электромагнетизмом и слабым взаимодействием появляется вследствие (нетривиальной) линейной комбинации Y и I3, которая исчезает для бозона Хиггса (это собственное состояние как Y, так и I3, так что можно взять коэффициенты −I3 и Y): U(1)em определяется как группа, генерируемая именно этой линейной комбинацией и не подвергается спонтанному нарушению симметрии, поскольку не взаимодействует с бозоном Хиггса.

За вклад в объединение слабого и электромагнитного взаимодействий элементарных частиц Шелдону Глэшоу, Стивену Вайнбергу и Абдусу Саламу была присуждена Нобелевская премия по физике в 1979. Существование электрослабых взаимодействий было экспериментально установлено в две стадии: сначала были открыты нейтральные токи в совместном эксперименте Гаргамелла по рассеиванию http://dic.academic.ru/dic.nsf/ruwiki/7227 нейтрино в 1973 г., а затем совместные эксперименты UA1 и UA2 в 1983 г. доказали существование W и Z калибровочных бозонов при помощи протон-антипротонных столкновений на ускорителе SPS (Super Proton Synchrotron, протонный суперсинхротрон).

3. «ТЕОРИЯ ВСЕГО»

Тео́рия всего́ (англ. Theory of everything, TOE) — гипотетическая объединённая физико-математическая теория, описывающая все известные фундаментальные взаимодействия. Первоначально данный термин использовался в ироническом ключе для обозначения разнообразных обобщённых теорий. Со временем термин закрепился в популяризациях квантовой физики для обозначения теории, которая бы объединила все четыре фундаментальные взаимодействия в природе. В научной литературе вместо термина «теория всего» используется термин «единая теория поля», тем не менее следует иметь в виду, что теория всего может быть построена и без использования полей, несмотря на то, что научный статус таких теорий может быть спорным.

В течение двадцатого века было предложено множество «теорий всего», но ни одна из них не смогла пройти экспериментальную проверку, или существуют значительные затруднения в организации экспериментальной проверки для некоторых из кандидатов. Основная проблема построения научной «теории всего» состоит в том, что квантовая механика и общая теория относительности (ОТО) имеют разные области применения. Квантовая механика в основном используется для описания микромира, а общая теория относительности применима к макромиру. СТО (Специальная теория относительности) описывает явления при больших скоростях, а ОТО является обобщением ньютоновской теории гравитации, объединяющей ее со СТО и распространяющей на случай больших расстояний и больших масс. Непосредственное совмещение квантовой механики и специальной теории относительности в едином формализме (квантовой релятивистской теории поля) приводит к проблеме расходимости — отсутствия конечных результатов для экспериментально проверяемых величин. Для решения этой проблемы используется идея перенормировки величин. Для некоторых моделей механизм перенормировок позволяет построить очень хорошо работающие теории, но добавление гравитации (то есть включение в теорию ОТО как предельного случая для малых полей и больших расстояний) приводит к расходимостям, которые убрать пока не удаётся. Хотя из этого вовсе не следует, что такая теория не может быть построена.

После построения в конце XIX века электродинамики, объединившей на основе уравнений Максвелла в единой теоретической схеме явления электричества, магнетизма и оптики, в физике возникла идея объяснения на основе электромагнетизма всех известных физических явлений. Однако создание общей теории относительности привело физиков к мысли, что для описания на единой основе всех явлений необходимо объединение теорий электромагнетизма и гравитации.

Первые варианты единых теорий поля были созданы Давидом Гильбертом и Германом Вейлем. В дальнейшем большое внимание «теории всего» уделил Альберт Эйнштейн. Он посвятил попыткам её создания большую часть своей жизни. Гильберт, Вейль и, в дальнейшем, Эйнштейн полагали, что достаточно объединить общую теорию относительности и электромагнетизм, к тому же вначале не имелось в виду, что они должны быть квантовыми, так как сама квантовая механика еще не была достаточно развитой. В значительной мере, если не полностью, минимальная программа — объединение ОТО и электродинамики была решена в рамках теории Калуцы — Клейна (возможно, и еще некоторых теорий), но почти уже ко времени ее создания стало актуальным включение в теорию других полей и предсказание существования многих частиц, что было не совсем тривиальным, а в дальнейшем прояснились и новые трудности, а квантовый вариант теории Калуцы-Клейна хоть и был мыслим, однако квантование наталкивалось на трудности конкретной разработки, как и квантование самой общей теории относительности отдельно.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы