Классификация микрочастиц - фермионы и бозоны; лептоны; кварки; адроны; нуклоны

Закон сохранения момента количества движения в применении к процессу рождения пар показывает, что позитроны обладают полуцелым спином и, следовательно, подчиняются статистике Ферми. Разумно предположить, что спин позитрона равен 1/2, как и спин электрона.

Характерная особенность поведения частиц и античастиц - их аннигиляция при столкновении. Типичный пример - взаимоуничтожение электрона и

позитрона с выделением энергии при рождении двух фотонов.

В сильных и электромагнитных взаимодействиях имеется полная симметрия между частицами и античастицами - все процессы, протекающие с первыми, возможны и аналогичны для вторых. Подобно протонам и нейтронам их античастицы могут образовывать антиядра. В принципе можно представить себе и антиатомы, и даже большие скопления антивещества.

Адроны - общее название для частиц, наиболее активно участвующих в сильных взаимодействиях. Название происходит от греческого слова "сильный, крупный". Все адроны делятся на две большие группы - барионы и мезоны.

Барионы - это адроны с полуцелым спином. Самые известные из них - протон и нейтрон. Одним из свойств барионов, отличающим их от других частиц, можно считать наличие у них сохраняющегося барионного заряда, введенного для описания опытного факта постоянства во всех известных процессах разности между числом барионов и антибарионов.

Мезоны - адроны с целым спином. Их барионный заряд равен нулю. Адронов насчитывается около 350. Большинство из них крайне нестабильны и распадаются за время порядка 10 -23 С. Столь короткоживущие частицы не могут оставить следов в детекторах. Обычно их рождение обнаруживают по косвенным признакам. Например, изучают реакцию аннигиляции электронов и позитронов с последующим рождением адронов.

Открытие мезона, в отличие от открытия позитрона явилось не результатом единичного наблюдения, а скорее выводом из целой серии экспериментальных и теоретических исследований.

В 1932 году Росси, используя метод совпадений, предложенный Боте и Кольхерстером, показал, что известную часть наблюдаемого на уровне моря космического излучения составляют частицы, способные проникать через свинцовые пластины толщиной до 1 м. Вскоре после этого он также обратил внимание на существование в космических лучах двух различных компонент. Частицы одной компоненты (проникающая компонента) способны проходить через большие толщи вещества, причем степень поглощения их различными веществами приблизительно пропорциональна массе этих веществ. Частицы другой компоненты (ливнеобразующая компонента) быстро поглощаются, в особенности тяжелыми элементами; при этом образуется большое число вторичных частиц (ливни). Эксперименты по изучению прохождения частиц космических лучей через свинцовые пластины, проведенные с камерой Вильсона Андерсоном и Неддемейером, также показали, что существуют две различные компоненты космических лучей. Эти эксперименты показали, что, в то время как в среднем потеря энергии частиц космических лучей в свинце совпадала по порядку величин с теоретически вычисленной потерей на столкновения, некоторые из этих частиц испытывали гораздо большие потери.

В 1934 году Бете и Гайтлер опубликовали теорию радиационных потерь электронов и рождения пар фотонами. Свойства менее проникающей компоненты, наблюдавшейся Андерсоном и Неддемейером, находились в согласии со свойствами электронов, предсказанными теорией Бете и Гайтлера; при этом большие потери объяснялись радиационными процессами. Свойства ливнеобразующего излучения, обнаруженного Росси, также могли быть объяснены в предположении, что это излучение состоит из электронов и фотонов больших энергий. С другой стороны, признавая справедливость теории Бете и Гайтлера, приходилось делать вывод, что "проникающие" частицы в экспериментах Росси и менее поглощающиеся частицы в экспериментах Андерсона и Неддемейера отличаются от электронов. Пришлось предположить, что проникающие частицы тяжелее электронов, так как согласно теории потери энергии на излучение обратно пропорциональны квадрату массы.

В связи с этим обсуждалась возможность краха теории излучения при больших энергиях. В качестве альтернативы Вильямс в 1934 году высказал предположение, что проникающие частицы космических лучей, возможно, обладают массой протона. Одна из трудностей, связанных с этой гипотезой, заключалась в необходимости существования не только положительных, но и отрицательных протонов, потому что эксперименты с камерой Вильсона показали, что проникающие частицы космических лучей имеют заряды обоих знаков. Более того, на некоторых фотографиях, полученных Андерсоном и Неддемейером в камере Вильсона, можно было видеть частицы, которые не излучали подобно электронам, но, однако, были не такими тяжелыми, как протоны. Таким образом, к концу 1936 года стало почти очевидным, что в космических лучах имеются, кроме электронов, еще и частицы до тех пор неизвестного типа, предположительно частицы с массой, промежуточной между массой электрона и массой протона. Следует отметить также, что в 1935 году Юкава из чисто теоретических соображений предсказал существование подобных частиц.

Существование частиц с промежуточной массой было непосредственно доказано в 1937 году экспериментами Неддемейера и Андерсона, Стрита и Стивенсона.

Эксперименты Неддемейера и Андерсона явились продолжением (с улучшенной методикой) упоминавшихся выше исследований по потерям энергии частиц космических лучей. Они были проведены в камере Вильсона, помещенной в магнитное поле и разделенной на две половины платиновой пластиной толщиной 1 см. Потери импульса для отдельных частиц космических лучей определялись путем измерения кривизны следа до и после пластины.

Поглощающиеся частицы легко могут быть интерпретированы как электроны. Такая интерпретация подкрепляется тем, что поглощающиеся частицы в отличие от проникающих часто вызывают в платиновом поглотителе вторичные процессы и по большей части встречаются группами (по две и больше). Именно этого и следовало ожидать, так как многие из электронов, наблюдаемых при такой же геометрии эксперимента, что у Неддемейера и Андерсона, входят в состав ливней, образующихся в окружающем веществе. Что касается природы проникающих частиц, то здесь многое пояснили два следующих результата, полученных Неддемейером и Андерсоном.

1). Несмотря на то, что поглощающиеся частицы относительно чаще встречаются при малых значениях импульсов, а проникающие частицы наоборот (более часты при больших значениях импульсов), имеется интервал импульсов, в котором представлены и поглощающиеся и проникающие частицы. Таким образом, различие в поведении этих двух сортов частиц не может быть приписано различию в энергиях. Этот результат исключает возможность считать проникающие частицы электронами, объясняя их поведение несправедливостью теории излучения при больших энергиях.

2). Имеется некоторое число проникающих частиц с импульсами меньше 200 Мэв/с, которые производят не большую ионизацию, чем однозарядная частица вблизи минимума кривой ионизации. Это означает, что проникающие частицы космических лучей значительно легче, чем протоны, поскольку протон с импульсом меньше 200 Мэв/с производит удельную ионизацию, примерно в 10 раз превышающую минимальную.

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы