Автоматизация методической печи

Автоматически контролируются следующие параметры: температура (рабочего пространства в одной или нескольких точках; продуктов сгорания перед и после рекуператора и перед дымососом; подогретых воздуха и газа; первой секции металлических рекуператоров); расход (топлива на печь и по зонам отопления; воздуха; охлаждающей воды, если имеются водо-охлаждаемые детали); давление (в рабочем пространстве

печи; газа и воздуха); разрежение в одной или нескольких точках дымового тракта.

Автоматически регулируются: температура в зонах рабочего пространства; давление в рабочем пространстве; качество сжигания топлива.

Для оповещения персонала о нарушениях в работе и автоматического отключения печи при возникновении аварийных ситуаций предусматривается система звуковой и световой сигнализации и отключения газа и воздуха на печь. Отсечка подачи газа и воздуха к горелкам осуществляется при падении давления одного из компонентов горелки и отключении питания приборов КИПиА.

Наиболее сложным вопросом управления нагревательными печами является определения законченности процесса нагрева заготовки. Если определить температуру поверхности еще возможно, то задача определения нагрева центра заготовки является сложной и неразрешимой в промышленном масштабе. Сейчас наиболее эффективно использовать математическую модель нагрева слитка по данным которой управлять процессом нагрева. Для оценки адекватности модели необходимо проводить эксперименты на заготовках и периодически адаптировать ее под текущие производственные условия.

Тепловые процессы, протекающие в нагревательных печах, крайне многообразны. Процессы горения, движения газов, теплообмена, протекающие при высоких температурах сложны и неразрывны. Поэтому исследование теплообмена и его математическое описание представляет собой крайне трудную задачу, решение которой имеет важное теоретическое и практическое значение. Для выработки надежного режима работы необходимы многочисленные экспериментальные исследования на действующих печах. Однако экспериментальное изучение теплообмена в высокотемпературных печах весьма затруднено. Такие эксперименты как измерение тепловых потоков в различных точках по длине и ширине печи, температуры факела и кладки, продвижение через печи сляба с размещенными в нем термопарами и ряд других могут выполняться лишь единично из-за сложности их, что не может обеспечить изучения многочисленных вариантов изменения режимных параметров печей. В таких условиях незаменимым становится математическое моделирование, требующее выполнения двух непременных условий: наличия возможности более точной математической модели процесса в обязательной строгой адаптации модели на действующем агрегате. Адаптация математической модели также требует сложных экспериментов на печах, однако, не столь многочисленных, как при эмпирическом исследовании в печах. Строго адаптированная математическая модель позволяет с использованием компьютера проанализировать практически любое число вариантов, чего совершенно невозможно сделать при эмпирическом методе исследования, и выбрать оптимальные условия тепловой работы печей для нагрева того или иного металла. При создании моделей методических печей встречается ряд трудностей, связанных со сложностью протекающих процессов и с недостаточной изученностью многих из них.

Методическая печь состоит из нескольких зон, ни одну из которых нельзя рассматривать автономно. Даже первая по ходу газов — томильная зона находится в состоянии теплообмена с последующей сварочной зоной. Все зоны (кроме томильной) испытывают на себе влияние других зон не только в результате протекания процессов взаимного теплообмена, но и в результате перехода продуктов сгорания из предыдущей зоны в последующую. Недостаточная изученность процессов тепловыделения в пламени и теплоотдачи от пламени, усиленных влиянием приходящих из других зон продуктов сгорания, крайне затрудняет решение вопроса о температуре в каждой зоне, которая может изменяться не только по длине, но по ширине и высоте печи. Все это делает решение по выбору температуры весьма приближенным. Очень часто температуры в томильной и сварочных зонах принимаются постоянными.

В методических печах преобладающим (80%) является теплообмен излучением. Подавляющее большинство компонентов теплообмена излучением в рабочем пространстве печей имеет селективные радиационные свойства, которые должны быть учтены при расчете теплообмена, что также создает большие математические трудности.

В процессе нагрева металл подвергается окислению, причем по мере продвижения металла к торцу выдачи толщина слоя окалины увеличивается. Окалина представляет собой прежде всего значительное тепловое сопротивление: установлено, что перепад температуры в слое окалины достигает 100 С и более. Но этим влияние окалины на процесс нагрева не ограничивается. Окалина имеет отличные от металла радиационные свойства (спектральные степень черноты и поглощательную способность), что также оказывает влияние на теплообмен излучением.

В методических печах предприятий черной металлургии нагреву поддаются более двух с половиной тысяч различных марок сталей, каждая из которых характеризуется своими величинами теплопроводности и теплоемкости, зависящими от температуры. Это крайне усложняет математическую модель, для многочисленных марок сталей.

В соответствии с уравнением энергетического баланса существует три уровня потребления энергии. Первый уровень характеризуется эффективным поглощением тепла слябом в процессе нагрева, и составляет 60 % общей энергии. Во втором уровне нагрев происходит за счет сгорания топлива, составляя 20 - 30 %. Во время третьего уровня, тепло поглощается за счет излучения поверхности и других утечек энергии, обусловленных структурой печи. Таким образом, температура уходящих продуктов сгорания является переменной, контролирующей расход энергии.

Существуют два вида потерь энергии, причиной которых является уходящие продукты сгорания топлива и потери тепла, связанные с неполным сгоранием топлива. Следовательно, схема исследования сохранения энергии включает уменьшение температуры уходящих продуктов сгорания и повышение эффективности сгорания топлива.

Таким образом, нагревательные печи металлургии и машиностроения сегодня и в ближайшем будущем должны обеспечивать:

- высокую равномерность и стандартность нагрева изделий на основе управления процессами движения газов и сжигания топлива;

- глубокую утилизацию теплоты уходящих газов на уровне КИТ = 85- 90%, в частности с применением малогабаритных регенераторов для нагрева воздуха и, в случае необходимости, газообразного топлива с соблюдением экологических требований;

- минимальные потери теплоты на разогрев футеровки и через элементы конструкции печей в окружающую среду путем использования огнеупорных и теплоизоляционных волокнистых изделий;

- малоокислительный режим нагрева со снижением потерь металла в окалину до 0,5% массы нагреваемых изделий.

Актуальным научным направлением развития нагревательных печей является разработка новых горелочных устройств для объемного сжигания топлива с высокотемпературным воздухом, а также систем отопления нагревательных и термических печей с малогабаритными регенераторами.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы