Развитие мышления на уроках математики

“Лучшее, что может сделать учитель для учащегося, состоит в том, чтобы путем неназойливой помощи подсказать ему блестящую идею… Хорошие идеи имеют своим источником прошлый опыт и ранее приобретенные знания… Часто оказывается уместным начать работу с вопроса: “Известна ли вам какая-нибудь родственная задача?” (Пойа Д.). Таким образом, хорошим средством обучения решению задач, средством для нахож

дения плана решения являются вспомогательные задачи. Умение подбирать вспомогательные задачи свидетельствует о том, что учащийся уже владеет определенным запасом различных приемов решения задач. Если этот запас не велик (что вполне очевидно для учащихся VII—VIII классов), то учитель, видя затруднения учащегося, должен сам предложить вспомогательные задачи. Умело поставленные вспомогательные вопросы, вспомогательная задача или система вспомогательных задач помогут понять идею решения. Необходимо стремиться к тому, чтобы учащийся испытал радость от решения трудной для него задачи, полученного с помощью вспомогательных задач или наводящих вопросов, предложенных учителем.

Так, когда учащиеся затруднялись решить с помощью составления уравнения задачу “К некоторому двузначному числу слева и справа приписали по единице. В результате получили число в 23 раза большее первоначального. Найдите это двузначное число” ([5], № 1254), то в качестве вспомогательных задач мы предлагали следующие:

К числу х приписали справа цифру 4. Представьте полученное число в виде суммы, если х: а) двузначное число; б) трехзначное число.

К числу у приписали слева цифру 5. Представьте полученное число в виде суммы, если у: а) двузначное число; б) трехзначное число.

Конечно, думающий ученик задастся вопросом: как самому, без помощи учителя, находить вспомогательные задачи?

Безусловно, учащихся следует приучать самим составлять вспомогательные задачи, или упрощать условия предложенных задач так, чтобы без помощи учителя найти способы их решения.

Умение находить вспомогательные задачи, как и вообще умение решать задачи, приобретается практикой. Предлагая учащимся задачу, следует посоветовать выяснить, нельзя ли найти связь между данной задачей и какой-нибудь задачей с известным решением или с задачей, решающейся проще.

Для приобретения навыков решения довольно сложных задач нужно приучать школьников больше внимания уделять изучению полученного решения. Для этого мы предлагали учащимся видоизменять условия задачи, чтобы закрепить способ ее решения, придумывать задачи аналогичные решенным, более или менее трудные, с использованием найденного при решении основной задачи способа решения.

Решив задачу “В двух бочках было воды поровну. Количество воды в первой бочке сначала уменьшилось на 10%, а затем увеличилось на 10%. Количество воды во второй бочке сначала увеличилось на 10%, а затем уменьшилось на 10%. В какой бочке стало больше воды?” ([5], №1245), мы посчитали нужным задать учащимся вопросы: если вместо 10% взять 20%, 30%, а%? Какой вывод можно сделать?

Систематическая работа по изучению способов решения задач помогает учащимся не только научиться решать задачи, но и самим их составлять.

Так, после решения задачи “Докажите, что уравнение х2 – у2 = 30 не имеет решений в целых числах” ([5], № 1272), можно предложить учащимся попытаться сформулировать рассмотренную задачу в общем виде. Это будет выглядеть так: “Докажите, что уравнение х2 ‑ у2 = 4р + 2 (р — простое число) не имеет решения в целых числах”.

Конструирование задач — интересное занятие, один из верных способов решать задачи.

Умение учащихся составлять нестандартные задачи, решаемые нестандартными способами, свидетельствует о культуре их мышления, хорошо развитых математических способностях.

При анализе решения задачи полезно сопоставить решение данной задачи с ранее решенными, установить возможность ее обобщения.

Мы думаем, учитель должен постоянно помнить, что решение задач является не самоцелью, а средством обучения. Обсуждение найденного решения, поиск других способов решения, закрепление в памяти тех приемов, которые были использованы, выявление условий возможности применения этих приемов, обобщение данной задачи — все это дает возможность школьникам учиться на задаче.

Именно через задачи учащиеся могут узнать и глубоко усвоить новые математические факты, овладеть новыми математическими методами, накопить определенный опыт, сформировать умения самостоятельно, и творчески применять полученные знания.

О роли наблюдений и индукции при нахождении способов решения нестандартных алгебраических задач.

Общеизвестна роль, которая отводится индукции и наблюдениям при обучении математике учащихся младших классов. Позднее индуктивный метод уступает место дедуктивному. При этом часто индуктивный способ решения задачи не проводится, решение выполняется дедуктивным способом. В результате от учащихся ускользают пути поиска решения задачи, что отрицательно сказывается на математическом развитии.

К сожалению, как свидетельствуют данные нашего исследования, при обучении учащихся математике (в частности, при обучении учащихся способам решения нестандартных задач) наблюдение и индукция (в том числе и полная) не заняли еще должного места. А между тем учитель должен знать, и по возможности довести до сознания учащихся тот факт, что математика является экспериментальной, индуктивной наукой, что наблюдение и индукция играли и играют большую роль при открытии многих математических фактов. Еще Л. Эйлер писал, что свойства чисел, известные сегодня, по большей части были открыты путем наблюдения и открыты задолго до того, как их истинность была подтверждена строгими доказательствами.

Поэтому уже в младших классах школы при обучении математике (да и другим предметам) надо учить школьников наблюдениям, прививать им навыки исследовательской творческой работы, которые могут пригодиться в дальнейшем, какой бы вид деятельности они не избрали после окончания школы.

Этой цели может служить, например, такое задание: “Число 6 представим в виде суммы всех его делителей, исключая из их состава само это число (6 = 1 + 2 + 3). Установите, сколько в первых двух десятках натуральных чисел (1, 2, 3, …, 20) существует чисел, равных сумме всех своих делителей (такие числа называют совершенными)”. Учащиеся путем перебора получают ответ. При этом следует добиваться от них понимания того, что полученный вывод (в первых двух десятках натуральных чисел содержится одно “совершенное” число — число 6, ближайшим следующим “совершенным” числом, которое можно обнаружить путем проб, является 28: 28 = 1 + 2 + 4 + 7 + 14) является строго (научно) обоснованным, так как примененный метод полной индукции (так называемый метод перебора) является научным и широко применяется в математике при доказательстве теорем и решении задач.

Методом полной индукции (рассмотрением всех возможных случаев) может быть уже в младших классах школы доказана теорема: “В первой сотне натуральных чисел содержится 25 простых чисел”.

Подчеркивая роль дедуктивных доказательств (дока­зательств в общем виде), учитель должен обратить внимание учащихся на роль наблюдений и неполной индукции при “открытии” математических закономерностей, при нахождении способа решения самых разнообразных математических задач, на роль полной индукции при обосновании найденных индуктивным путем закономерностей.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы