Разработка элективного курса по теме: "Кривые второго порядка" для учащихся старшей школы

Если центр эллипса находится не в начале координат, но его оси параллельны координатным осям, то он задаётся уравнением (4), где С (а; b) – центр эллипса. Это легко следует из формул параллельного переноса, или каноническим уравнением

(5) – С (х; у) – центр элл

ипса.

Данного материала достаточно для построения эллипса в том случае, если он задан уравнением, содержащем как квадраты, так и первые степени переменных.

б) Построить график

I способ

Преобразуем к виду (4):

Это уравнение эллипса с центром в точке С (5; – 4), где k = (рис. 28)

Рис. 28

II способ

Преобразуем к виду (5): . Получили уравнение эллипса с центром в точке С (5; – 4), где а = 3, b = 2.

Строим сам эллипс.

2. Найти длины полуосей и координаты фокусов следующих эллипсов:

а)

Приводим уравнение к каноническому виду , а = 3, b = 2.

Фокусы F1 и F2 имеют координаты F1(с; 0) и F2(– с; 0).

Итак, F1(; 0) и F2(; 0) а = 3, b = 2.

б)

Решаем аналогично а). , а = 3, b = 1.

F1(с; 0), F2(– с; 0).

Итак, F1(; 0) и F2(; 0) а = 3, b = 1.

в)

, а = , b = .

F1(с; 0), F2(– с; 0):

Итак, а = , b = , F1(; 0), F2(-; 0).

3. Найти координаты точек М, принадлежащих эллипсу и равноудалённых от фокусов.

Пусть М (х; у), тогда МF1 = МF2 (по условию). Т. к. F1(с; 0), F2(– с; 0): то

Если х = 0, то, подставляя его в исходное уравнение, получим: , Следовательно, и .

4. Взяв на плоскости прямоугольную декартову систему координат, изобразить области, определяемые следующими системами неравенств.

а)

Построим множество точек, определяемых 1-м, 2-м, 3-м неравенством.

Найдём пересечение этих множеств.

I. Построим эллипс но т. к. неравенство строгое, то точки эллипса не принадлежат искомой области, т.е. неравенство (2) задаёт внутренние точки эллипса.

Устанавливаем, что R = 3, (0< k <1), Cтроим осевой прямоугольник со сторонами и изображаем эллипс.

II. Строим множество точек, заданных вторым неравенством. Для этого строим прямую и штрихуем определяемую область.

Рис. 29

III. Аналогичные рассуждения для построения области, заданной неравенством у + 2 > 0.

Построение.

б)

Построим множество точек, определяемых 1-м, 2-м, и 3-м неравенствами.

Найдём пересечение этих множеств.

I. – эллипс, точки которого не принадлежат искомой области (неравенство строгое), т.е. неравенство задаёт внешние точки эллипса. Приведём уравнение к каноническому виду

Строим осевой прямоугольник со сторонами a и b, изображаем эллипс.

II. Строим множество точек, заданных неравенством (2). Для этого изображаем прямую у = 3 и штрихуем определяемую область.

Рис. 30

5. Определить вид и расположение кривой

Решение. Дополним члены, содержащие х и у соответственно, до полных квадратов:

Отсюда получаем

Следовательно, кривая, заданная исходным уравнением, представляет собой эллипс с полуосями

Центр эллипса находится в точке .

Задачи для самостоятельного решения

1. Написать каноническое уравнение эллипса, длина малой оси которого равна 6, а фокусное расстояние равно 8.

2. Написать каноническое уравнение эллипса, если известно, что расстояние между концами большой и малой оси равно 5, а сумма длин полуосей равна 7.

3. Написать каноническое уравнение эллипса, если расстояния фокуса его от концов большой оси равны 2 и 18.

3.2 Материал для закрепления теме гипербола

Упражнения:

Упражнение 1: Сформулируйте и докажите для гиперболы утверждения, аналогичные утверждению из упражнения 1из темы эллипс.

Решение.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы