Помехи в рельсовой сети

При несимметричных несинусоидальных первичных напряжениях, кроме канонических (четных) гармоник, кратных 300 Гц для шестипульсовых выпрямителей, 600 Гц – для двенадцатипульсовых и 1200 Гц – для двадцатичетырехпульсовых, в кривой выпрямленного напряжения присутствуют и неканонические (нечетные), кратные 50 Гц (50, 100, 150 Гц и т.д.). Величины неканонических гармонических составляющих зависят

от углов коммутации и запаздывания при несимметрии питающего напряжения управляемых выпрямителей. Так, при угле запаздывания 600 и углах коммутации от 0 до 100 они могут достигать для шестой гармоники 25% от выпрямленного напряжения, двенадцатой – 11,5%, восемнадцатой и двадцать четвертой – 6%, четырнадцатой, шестнадцатой, двадцатой и двадцать второй – 1,5%. При больших углах коммутации величина амплитуды гармоники снижается [5].

Тяговый ток протекает по двум рельсовым линиям. ЭДС, индуктируемые в приемных катушках, направлены встречно и взаимно складываются. Поэтому, мешающее воздействие тяговых токов и их гармоник на устройства АЛС проявляется лишь тогда, когда токи в рельсах оказываются неравными между собой или в приемных катушках равные токи индуктируют неравные ЭДС [2].

Результаты опыта показали присутствие гармоники 300 Гц в рельсовых цепях метрополитена вблизи фидеров обратного тока. На рис. 4 показана плотность распределения вероятности гармоники 300 Гц. Вероятности, полученные по результатам экспериментальных данных, обозначены точками. Аппроксимированная кривая проведена линией. Максимум гармоники 300 Гц составил 379 мВ, минимум – 100 мВ, математическое ожидание – 177 мВ, среднеквадратическое отклонение – 74 мВ. Наличие этой гармоники говорит о неправильной работе сглаживающих устройств на тяговой подстанции. Эта гармоника не может повлиять на работу системы АЛС-АРС.

Проанализируем причины появления импульсных помех.

Импульсные помехи возникают, как правило, в результате резких изменений значений тягового тока в рельсах, на локомотиве, а также намагничиваемости рельсов. Как указывается в работе [2], продолжительность периода следования разнополярных импульсов помех зависит от расстояния между магнитными полюсами намагничиваемого места и скорости движения поезда. Примерно при скорости движения поезда 120 км/ч продолжительность периода импульса совпадает с периодом колебаний сигнальной частоты 25 Гц для АЛС электрифицированных железных дорог переменного тока. При проведении экспериментальных исследований в метро такой гармоники обнаружено не было.

Источники импульсных помех – коммутационные процессы при токосъеме, в коллекторах машин, преобразовательных установках и других элементах электрической схемы локомотива.

Помехи, вызванные работой коллекторного генератора постоянного тока, обусловлены дискретностью строения магнитной системы и обмотки якоря. Частота основной гармоники, вызванной коммутациями (иначе, коротким замыканием секций якоря щеткой), определяется из соотношения

,

где р – число пар полюсов электрической машины; n – частота вращения якоря, мин –1.

Частота основной гармоники переменной составляющей равна 30 Гц. Здесь наиболее весомыми являются гармоники от 0 до 350 Гц.

Пазовые и зубцевые помехи вызваны поперечными и продольными пульсациями магнитного потока и зависят от частоты вращения якоря n и количества пазов z.

Частота зубцевых fзп и пазовых fпп помех

;

при z/p четных и

при z/p нечетных.

Наиболее весомыми здесь являются гармоники 0 –350 и 850 – 1000 Гц, а пазовых – 0 – 150, 400 – 500, 600 – 900 Гц [6].

Также наблюдаются случайные импульсные помехи, возникающие при процессах коммутации в электрических аппаратах, длительностью до 10 мкс.

По результатам эксперимента можно сделать вывод о наличии следующих импульсных помех, возникающих в процессе работы локомотива: 275 Гц и 320 Гц амплитудой до 150 мВ, 550 Гц – до 250 мВ, 650 Гц – 160 мВ, 720 Гц – до 250 мВ. Гармоники частотой 275, 550 и 720 Гц могут быть восприняты устройствами АЛС и рельсовых цепей как полезный сигнал и оказать мешающее или опасное действие на работу системы АЛС-АРС в зависимости от их длительности и амплитуды.

Для исследования сигналов, снятых с катушек АЛС, была разработана специальная программа в среде Matlab, позволяющая определять спектры, амплитуды и фазы частот.

Список литературы

1. К.М. Махмутов. Устройства интервального регулирования движения поездов на метрополитене. – М.: Транспорт, 1986. – 351 с.

2. А.А. Леонов. Техническое обслуживание автоматической локомотивной сигнализации. ‑ М: Транспорт, 1982. – 255 с.

3. Техническое описание системы интервального регулирования движения поездов на метрополитене «Днепр».-К., 1992. – 30 с.

4. Ю.В. Соболев. Путевые преобразователи автоматизированных систем управления железнодорожного транспорта. – Харьков: ХФИ «Транспорт Украины», 1999. – 200 с.

5. М.Д. Трейвас. Высшие гармонические выпрямленного напряжения и их снижение на тяговых подстанциях постоянного тока. ‑ М: Транспорт, 1964. – 100 с.

6. А.Н. Муха. Помехоустойчивость релейной аппаратуры электроподвижного состава, построенной с применением современной элементной базы. // Транспорт. Сб. науч. тр. Днепропетр. гос. техн. ун-та ж.‑д. трансп. –2001.-Вып.7. – С. 79–85.

Страница:  1  2 


Другие рефераты на тему «Транспорт»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы