Строение земной коры. Этапы формирования рельефа

Рудный бассейн Садбери имеет овальную форму размером 60х27 км. Он располагается на поверхности Канадского кристаллического щита, сложенного гранитами и кварцитами. Строение бассейна напоминает слоеный пирог: внизу залегают рудоносные породы – микропегматиты, диориты и другие, над ними – туф «опанинг», перекрытый слоями шиферных сланцев и песчаников. Была высказана гипотеза о том, что бассейн Са

дбери появился в результате падения 1700 млн. лет назад (возраст определен методами абсолютной геохронологии) гигантского метеорита. К этой гипотезе привели попытки расшифровать происхождение туфа «опанинг». По строению он представляет собой брекчию – раздробленную и вновь сцементированную породу – Обломки брекчии состоят из окружающих Садбери коренных гранитов. В брекчии со держится много стекла – расплавленных и быстро остыв птах, не успевших раскристаллизоваться минералов. По этим признакам «опанинг» очень напоминает мате риал из известных метеоритных кратеров. Сходство это недавно было подтверждено находкой в Садбери кристаллов кварца, обладающих своеобразной ориентировкой трещин, которые возникают в кварце только под воздействием ударных волн, создающих чрезвычайно высокие давления при ядерных взрывах или при падении гигантски метеоритов. Очевидно, удар гигантского метеорита вызвал и появление глубинных расплавленных масс, содержащих большое количество металлов.

Есть у нас прямые доказательства того, что падение даже относительно небольших метеоритов способно вызвать плавление пород на дне метеоритного кратера. Недавно советским геологом В.Л. Масайтисом была подробно изучена так называемая Попигайская котловина – округлая депрессия диаметром 100 км, расположенная на севере Сибири, в бассейне реки Хатанги. Катастрофа произошла примерно 30 млн. лет назад. Выброшенные во время взрыва крупные глыбы кристаллических пород фундамента Сибирской платформы разлетелись на расстояние до 40 км от края кратера. Удар метеорита вызвал плавление горных пород, в результате чего возникла необычная расплавленная лава с высоким содержанием кремнезема (65%), близкая но химическому составу к породам фундамента платформы и резко отличающаяся по химизму от глубинных трапповых излияний. Таким образом, если не все, то многие из названных механизмов плавления материала коры вследствие падения космических теп действительно существуют. Земную кору второй стадии эволюции Земли можно представить в виде относительно толстого слоя 20–50 км обводненных (серпентинизированных), в той или иной степени раздробленных ультраосновных пород. Местами встречались округлые массивы разных размеров переплавленных основных и ультраосновных пород и лавовые покровы на дне метеоритных кратеров.

Следующая стадия эволюции коры начиналась во второй половине архея (3–2,5 мдрд. пет назад). С этого периода тектоносфера Земли приобрела необходимую хрупкость. Отдельные зоны земной коры в местах максимальных напряжений стали рассекаться глубинными разломами, вдоль которых формировались геосинклинальные пояса и осуществлялся обмен веществом между корой и мантией Земли. Пространства же между такими; поясами разломов были относительно стабильны. В их пределах существовал платформенный режим. Важнейшей особенностью этой стадии развития коры является то, что с течением времени возникали новые системы разломов, а старые постепенно залечивались. В результате в red логической истории нашей планеты наметилось несколько эпох образования новых – геосинклинальных поясов, когда участки с платформенным типом развития сменялись геосинклинальным и наоборот.

Зоны глубинных разломов служили каналами, по которым происходил обмен веществом между корой и мантией Земли. Из мантии вследствие происходящего там плавления на поверхность Земли поступали значительные порции вулканических продуктов, преимущественно в виде базальтовых лав. Но в тех же приразломных зонах осуществлялся и обратный процесс – поглощение осадков из более глубоких горизонтов коры в мантию Земли. Помимо глубинных разломов необходимым условием обмена вещества между корой и мантией Земли является существование в мантии астеносферного слоя, где материал мантии находится в частично расплавленном состоянии и течет в горизонтальном направлении. Но возникновение астеносферного слоя в недрах сформировавшейся Земли возможно лишь тогда, когда ее термическая эволюция уже прошла определенный этап, первичные термальные неоднородности сгладились, а разогревание недр в результате радиоактивного распада достигло состояния, напоминающего современное.

Важнейшей особенностью третьей стадии эволюции земной коры, когда уже происходил обмен веществом между корой и мантией, является постоянное обогащение коры кремнеземом, калием и натрием. Задерживались в коре и радиоактивные элементы, что способствовало плавлению пород и формированию крупных гранитных тел.

Третья стадия развития Земли до некоторой степени продолжается и сейчас, что подтверждается различными типами тектонических движений на континентах. Однако, по-видимому, с начала палеозойской эры, т.е. примерно 0.5 млрд. лет назад, Земля вступила в четвертую свою стадию эволюции, которую мы с полным правом можем именовать океанической. Важнейшей особенностью этой стадии жизни нашей планеты является уничтожение мощной континентальной коры и превращение ее в тонкую океаническую, где, если не считать слоя воды, до границы М всего лишь 5–7 км.

Рассмотрим последовательность событий при формировании тонкой океанической коры, согласно нашей гипотезе океанообразования.

Во впадинах средиземноморского типа и окраинных морях в настоящее время происходит утоньшение коры (океанизация). Формирование впадин Средиземноморья связано с геосинклинальным типом развития коры, тогда как возникновение океанов от этого не зависит. Океаны, k как правило, развиваются на месте древних платформ. Таковы Индийский (на месте прежней Гондваны) и Атлантический океаны. Если океаны граничат со складчатыми поясами, то между ними обычно расположена зона шельфа. Широкий шельф разделяет складчатые сооружения Евразии, Атлантический и Северный Ледовитый океаны. Шельф возникает там, где складчатые пояса расположены поперечно или под углом к океану. Если они параллельны, то служат непреодолимой преградой для океана. Так, геосинклинальный пояс Кордильер и Анд приостановил распространение на восток Тихого океана. На западе Тихий океан предпочел «перепрыгнуть» через складчатую зону Японии, чем ее океанизировать. Следовательно, кора складчатых поясов по каким-то причинам не океанизируется. Выше было показано, что серпентинезированные гипербазиты – это наиболее вероятный состав нижних 20–30 км коры платформ. В складчатых областях, где в противоположность платформам в протерозое и фанерозое преобладало погружение, вещественный состав земной коры иной. Там кора сложена осадками, в той или иной степени метаморфизованными и гранитизированными.

Если исходить из предполагаемого вещественного става земной коры платформ (граниты, гранодиориты – 5 км; габброиды и основные гранулиты – 7 км; серпенти-низированный гипербазит – 30 км), то в результате частичного плавления и выноса вверх воды, щелочей, кремнезема можно представить состав океанической коры: вода и щелочи (соли) – 4 км; кремнезем 2–4 км; анортозит – 5 км.[7]

Страница:  1  2  3  4  5 


Другие рефераты на тему «Геология, гидрология и геодезия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы