Методы и условия культивирования изолированных клеток и тканей растений

Гаплоидные особи стерильны, но можно искусственно удвоить набор их хромосом с помощью колхицина и получить диплоидные гомозиготные растения.

Гаплоиды могут возникать спонтанно, но частота их спонтанного возникновения очень мала. Искусственным путем с Использованием методов in vitro удается получить большие количества гаплоидных растений. Существует три способа получения гаплоидов с использо

ванием метода культуры изолированных тканей:

андрогенез – получение гаплоидных растений на искусственной питательной среде из изолированных пыльников и микроспор.

гиногенез – получение гаплоидных растений на искусственной питательной среде из изолированных семяпочек;

партеногенез – получение гаплоидов из гибридного зародыша, у которого из-за несовместимости хромосом родителей потеряны отцовские хромосомы.

Образовавшиеся в результате элиминации хромосом отцовского генома гаплоидные эмбриоиды культивируют на искусственных питательных средах и получают гаплоидные растения. Сорта ячменя Исток и Одесская-15 были получены комбинацией партеногенетического метода с культурой изолированных зародышей за четыре года вместо обычных 10–12 лет. Методом культуры пыльников из сортов и гибридов мягкой и твердой пшеницы в НПО «Элита Поволжья» за четыре года получено более 2,5 тыс. дигаплоидных линий, которые характеризуются гомогенностью и стабильностью.

Продолжается разработка технологии получения гаплоидов посредством культуры пыльников пшеницы, ячменя, кукурузы, озимой ржи, картофеля. В культуре пыльников возможны два пути образования гаплоидных растений. Первый – образование растений путем эмбриогенеза в пыльцевых зернах. При этом внутри пыльников из отдельных пыльцевых зерен возникают эмбриоиды. Они прорастают и дают гаплоидные растения. Второй – образование каллуса из клеток пыльника. В дальнейшем в результате морфогенеза из каллусных клеток регенерируют растения. В этом случае образовавшиеся растения не всегда бывают гаплоидными и часто отличаются по плоидности. До конца не выяснено, образуются ли они от полиплоидизированных гаплоидных клеток или от слившихся клеток.

Гаплоиды, полученные in vitro, могут применяться не только в практической селекции, но и в работах по генетической инженерии, а также по клеточной селекции. Пыльцевые зерна являются в некоторых случаях более удобными, чем протопласты, объектами для опытов по генетической трансформации.

Криосохранение растений. Криосохранение соматических клеток растений в жидком азоте (температура – 196° С) – новое направление в биотехнологии, которое широко стало развиваться с начала 70-х годов XX столетия. Цель данной технологии заключается в сохранении в культуре in vitro генофонда, а также в обеспечении селекционеров в любое время генотипом, имеющим искомые признаки: необходимая пыльца для проведения гибридизации; уникальные и единичные семена, в том числе не выносящие обезвоживания; трансформированные, мутантные, гибридные клетки разных видов растений, способных к морфогенезу in vitro; зиготические и соматические зародыши и т.д. В настоящее время разработаны условия криосохранения для культивируемых клеток более 30 видов, каллусных культур (около 10 видов), изолированных протопластов (8 видов), сохранения меристем (25 видов) и кончиков стебля (13 видов). Приоритет в этом направлении принадлежит Институту физиологии растений РАН и, в частности, отделу культуры тканей и морфогенеза, возглавляемому проф. Р.Г. Бутенко.

При проведении работ по криосохранению необходимо, прежде всего, учитывать специфику растительных клеток: отбирать мелкие клетки, с маленькой вакуолью и пониженным содержанием воды; разрабатывать в каждом отдельном случае подходы замораживания и последующего оттаивания растительных клеток. При криосохранении встречается ряд трудностей, одна из которых связана с защитой замораживаемых клеток и тканей от осмотического стресса и механического разрушения структур в результате образования и роста кристаллов льда внутри клетки. Одновременно с этим необходимо правильно подбирать условия, обеспечивающие высокую выживаемость клеток при оттаивании и рекультивации.

Несмотря на многообразие работ в этом направлении, в них все же наметились общие приемы, лежащие в основе криосохранения: обработка клеток перед замораживанием, применение криопротекторов, соблюдение определенного режима замораживания в интервале от 0 до –40° С (в редких случаях до -70° С), а также специальные предосторожности при оттаивании объектов.

Процесс криоконсервации, как правило, начинается с подготовки культуры клеток к замораживанию. Это может быть достигнуто несколькими способами, предусматривающими культивирование клеток на питательных средах, содержащих различные осмотически активные вещества: маннит или сорбит в концентрации 2–6%, аминокислоты и среди них, в первую очередь, пролин, чье значение для связывания воды в клетках растений широко известно, а также у-аминомасляная кислота.

Подбор криопротекторов, веществ, уменьшающих повреждение клеток от осмотического и механического стресса, проводят эмпирически по принципу наименьшей токсичности и оптимального эффекта. Среди всех известных криопротекторов выделяются такие легко проникающие в клетки вещества, как диметилсульфоксид (ДМСО, 5–10%), глицерин (10–20%), а также непроникающие высокомолекулярные–поливинилпиролидон (ПВП), декстран, полиэтиленгликоль (ПЭГ) с молекулярной массой 6000.

Большое значение при криосохранении имеет правильно подобранный режим замораживания от 0 до –40° С. Как правило, для всех объектов устанавливается скорость замораживания 0,5–1 °С в минуту и всю эту работу проводят на специальном оборудовании, обеспечивающем программное замораживание. Такие приборы выпускает специальное конструкторское технологическое бюро с опытным производством при Институте проблем криобиологии и криомедицины (г. Харьков).

Таким образом, медленное замораживание и использование криопротекторов позволяет освободить клетку от свободной воды, и при –40° С клетки становятся полностью обезвоженными, что дает возможность проводить дальнейшее замораживание, а именно погружать ампулы с растительным материалом в жидкий азот.

Хранение материала в жидком азоте практически не лимитировано. Например, в криобанке Института физиологии растений РАН хранятся клетки моркови, которые находятся в жидком азоте около 20 лет, меристемы картофеля – более 10 лет и др.

Оттаивание и проверка жизнеспособности клеток после хранения в жидком азоте является последним этапом технологии криосохранения. Если замораживание осуществляют медленно, постепенно, то оттаивание должно быть проведено как можно быстрее. Для этого ампулы помещают в водяную баню с температурой 40°, а иногда и 60° С и выдерживают до полного исчезновения последнего кристаллика льда.

Для определения жизнеспособности клеток после оттаивания применяют наиболее простой, быстрый и вполне удовлетворительный способ – окраска витальным красителем (0,1%-ным феносафранином или 0,25%-ным раствором сини Эванса), в результате которой мертвые клетки окрашиваются, а живые нет. Окончательным критерием, безусловно, служит четкое возобновление роста и деления клеток при рекультивации на искусственных питательных средах после оттаивания.

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Биология и естествознание»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы