Определение коэффициентов потерь в местных гидравлических сопротивлениях

Рис.2

Рис.3

На рис. 3 тонкостенная труба меньшего диаметра вставлена внутрь трубы большего диаметра. Такое местное сопротивление называется наиболее резким сужением.

При внезапном сужении потери обусловлены, во-первых, трением потока при вхо

де в трубу меньшего диаметра и, во-вторых, потерями на вихреобразование. Последние обусловлены тем, что на частицы жидкости, движущейся по криволинейным траекториям, действуют силы, направленные к оси струи. Двигаясь под действием этих сил, частицы жидкости не обтекают входной угол, а срываются с него, что приводит к сужению потока на участке трубопровода меньшего диаметра. Кольцевое пространство, образованное сжатым потоком и стенками трубы, заполняется завихренной жидкостью.

Для расчета коэффициента сопротивления при внезапном сужении предложена эмпирическая формула [2]:

(13)

При наиболее резком сужении (рис. 3) силы, сжимающие струю, возрастают из-за уменьшения радиуса кривизны траекторий частиц, втекающих в трубу, что приводит к возрастанию потерь. Формулой (13) эти эффекты не учитываются.

Диффузором называется плавно расширяющийся от меньшего к большему диаметру участок трубопровода (рис. 4).

Рис.4.

Течение жидкости в диффузоре сопровождается уменьшением скорости и увеличением давления, а, следовательно, преобразованием кинетической энергии в энергию давления.

Основными характеристиками диффузора являются:

угол раствора (расширения)α;

степень расширения

;

длина диффузора LД;

Потери в диффузоре обусловлены тем, что частицы жидкости, находящихся вблизи стенок, тормозятся сильнее и движутся медленнее, чем центральные, и процесс преобразования энергии сопровождается увеличением неравномерности полей скоростей в сечениях диффузора. Слои жидкости, прилегающие к стенкам, обладают столь малой кинетической энергией, что на некотором расстоянии от входа в диффузор они оказываются не в состоянии преодолевать повышенное давление. Частицы жидкости останавливаются и даже начинают двигаться навстречу основному потоку. Обратное движение (противоток) вызывает отрыв основного потока от стенки и образование вихревой зоны. Интенсивность этих явлений возрастает с увеличением угла раствора диффузора, а вместе с этим растут и потери на вихреобразование в нем. При больших углах раствора течение сопровождается периодическим уносом вихревой области транзитным потоком с одновременным ее образованием на противоположной стенке (рис. 4).

Кроме того, в диффузоре есть потери и на трение по его длине.

Итак, потери в диффузоре складываются из потерь на трение, потерь на образование вихревой зоны, поддержание вращательного движения в ней, унос вихрей и образование новых вихревых областей.

Полную потерю напора в диффузоре условно рассматривают как сумму двух слагаемых:

,(14)

где - потери напора на трение;

- потери напора на расширение (вихреобразование).

В виде двух составляющих может быть представлен и коэффициент сопротивления диффузора:

(15)

Значения коэффициентов и имеются в справочной литературе или могут быть определены по формуле:

,(16)

где λ – коэффициент гидравлического трения, определяемый по параметрам на входе в диффузор.

(17)

где k – коэффициент, для конических диффузоров k = 1

Конфузоры.

Конфузором называется плавно сужающийся участок трубопровода (рис. 5).

Рис.5

Течение жидкости в конфузорах сопровождается увеличением скорости и падения давления. Так как давление в начале конфузора больше, чем в конце, причин к возникновению вихреобразования и срывов потока нет.

Основными характеристиками конфузора являются:

угол суженияα;

степень сужения

;

длина конфузора LК;

При достаточно больших углах сужения (α > 10о) степенях сужения (n > 3) на входе в цилиндрическую трубу меньшего диаметра поток может оторваться от стенок (рис. 5) и в этом случае коэффициент сопротивления конфузора представляется в виде двух слагаемых:

,(18)

где - коэффициент местного сопротивления конфузора;

- коэффициент сопротивления трения.

Колена. Отводы.

Коленом (рис. 6) называется внезапный поворот канала без закругления или с закруглением, радиус которого для внутренней и внешней стенок одинаков.

Отводом (рис. 7) называется изогнутый участок трубопровода, в котором (при равенстве входного и выходного сечений) закругления внутренней и наружной стенок представляют собой дуги концентрических окружностей. В изогнутых трубах и каналах, вследствие искривления потока, появляются центробежные силы, направленные от центра кривизны к внешней стенке трубы. Это приводит к повышению давления у внешней стенки и понижению давления у внутренней и обуславливает неравномерность скоростей по сечению изогнутого участка.

Рис.6.

Рис. 7.

У внешней стенки, вследствие повышения давления, появляется диффузорный эффект. При этом отрыв потока происходит от обеих стенок. Отрыв от внешней стенки является следствием диффузорного эффекта. Отрыв от внутренней стенки обуславливается стремлением потока двигаться в изогнутом участке по инерции к внешней стенке.

Поскольку при движении жидкости по криволинейному каналу на все ее частицы в направлении радиуса кривизны действуют центробежные силы, пропорциональные квадрату окружной скорости в сечении, образуется парный вихрь (рис. 7). В результате сложения вращательного и поступательного движений жидкость по изогнутому участку движется двумя винтовыми потоками.

Основная часть потерь напора в коленах и отводах вызывается отрывом потока от внутренней стенки и парным вихрем. Потери на трение по длине изогнутого участка учитываются включением длины отводов в общую длину трубопровода. Коэффициенты сопротивления изогнутых участков трубопроводов определяется по графикам и таблицам, а также эмпирическим формулам [2, 3].

Страница:  1  2  3 


Другие рефераты на тему «Геология, гидрология и геодезия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы