Установка для определения релаксационных характеристик низкомодульных полимерных материалов

Пниктиды LiPN2 и NaPN2 по строению валентной зоны очень похожи между собой и имеют определенное сходство с кристаллами SiO2 и LiBO2. Оба соединения LiPN2 и NaPN2 являются непрямозонными с вершиной валентной зоны в точке Т. Смещение абсолютного максимума валентной зоны в кристаллах со структурой халькопирита из точки Г в точку Т является следствием сильного тетрагонального сжатия в них. Интеграл

ьная трансформация энергетического спектра при переходе от структуры кристобалита к структуре халькопирита прослеживается на графиках плотности состояний, который условно разбит на три структуры А, В и С. Каждая из этих структур имеет подструктуры с соответствующей нумерацией.

Рис.3. Зонная структура и плотность состояний кристаллов SiO2, LiBO2, LiPN2 и NaPN2

Анализ вкладов атомных орбиталей в кристаллические орбитали показал, что нижняя связка валентных зон соединений SiO2, LiBO2, LiPN2 и NaPN2 состоит в основном из s-состояний анионов.

Следующая связка зон из четырех ветвей для SiO2 имеет преобладающий вклад s-состояний кремния в нижнюю ветвь (76%) и почти равный вклад (46-47%) p-состояний кремния и кислорода в оставшиеся три ветви. Для соединений LiBO2, LiPN2 и NaPN2 эта связка зон содержит преимущественный вклад s-состояний «тяжелого» катиона (B, P).

Рассмотрены особенности кристаллической структуры и магнитного упорядочения нового поколения магнитных полупроводниковых гомогенных оксидных материалов, которые могут быть использованы для создания устройств спиновой электроники. До последнего времени технологический прогресс в этой области сдерживался отсутствием материалов с температурой Кюри выше 300 K. Поиск полупроводниковых материалов, обладающих ферромагнитным упорядочением при комнатных температурах, ведется в разных направлениях, но самой рациональной является методология DMS (diluted magnetic semiconductor), так как растворение магнитных примесей в полупроводниковой матрице позволяет в сжатые сроки «запустить» создание спинтронных устройств, заменив в существующих электронных схемах полупроводниковые рабочие элементы на спин-полупроводниковые.

В настоящей работе представлены результаты исследования модельных материалов на основе ограниченных твердых растворов антиферромагнитных оксидов кобальта в диамагнитном оксиде цинка – полупроводника-пьезоэлектрика. Прежде всего, методами физико-химического анализа исследованы фазовые равновесия и построена концентрационная диаграмма системы Zn – Co – O [1]. По данным РФА, растворимость оксидов кобальта в вюртцитной матрице ZnO достигает 20 мол. %, при этом граничные составы твердого раствора изменяются с температурой. Заметная растворимость оксидов кобальта в ZnO наблюдается выше температуры 1173 K, при которой удается получить гомогенные образцы номинального состава Zn0.95Co0.05O, при 1273 K - Zn0.9Co0.1O, а при 1373 K - Zn0.8Co0.2O. Дальнейшее увеличение температуры приводит не к увеличению растворимости, а к распаду твердого раствора. Показано, что кристаллические растворы на основе ZnO, CoO и Co3O4 в зависимости от условий синтеза и отжига, обладают различной кислородной нестехиометрией при фиксированном отношении Zn/Co. Однако управление свойствами Zn1-XCoXO1+d с помощью задаваемого d в настоящее время не решаемая задача.

Был выбран другой возможный фактор влияния - введение еще одного магнитного иона в вюртцитную структуру Zn1-XCoXO1+d Поскольку Fe и Ni даже на 1 % не замещают позиции Zn2+ этом твердом растворе, т.е., согласно нашим данным, не образуют гомогенные поликристаллы номинального состава Zn0.89Co0.10Fe(Ni)0.01O, то для системного исследования были выбраны оксиды лантаноидов. Установлено, что оксиды четырех лантаноидов (Pr, Nd, Sm и Eu) способны образовывать с Zn0.9Co0.1O1+d ограниченные твердые растворы. В случае европия, растворимость достигает состава Zn0.87Co0.10Eu0.03O1+d.

Методом измерения пондеромоторной силы в магнитном поле 0,86Т и интервале температур 77 - 700К изучены зависимости удельной намагниченности s=f(T) и магнитной восприимчивости 1/χ=f(T) полученных материалов. Оказалось, что кривые удельной намагниченности исследованных образцов, как системы Zn–Co–O, так и систем Zn – Me –Co–O (где Me=Pr, Nd, Sm, Eu) практически одинаковы. Между ними наблюдается лишь небольшое различие в абсолютных значениях намагниченности. Кривые удельной намагниченности и магнитной восприимчивости указывают на наличие двух критических температур Т1≈ 125К и Т2≈ 650К. Можно предположить, что при температуре Т1 наблюдается фазовый переход «магнитный порядок I – магнитный порядок II», а при температуре Т2 –переход «магнитный порядок II – магнитный беспорядок». Анализ температурных зависимостей s=f(T) и 1/χ=f(T) показывает, что при температуре Т2 происходит переход в парамагнитное состояние. Значения удельной намагниченности всех образцов при температуре жидкого азота s < 0,5 Гс∙см3/г., поэтому проблематично говорить только о ферромагнитном упорядочении, несмотря на то, что при повышении температуры величина удельной намагниченности плавно уменьшается. В диапазонах температур 150-500 К и 650-725 К поведение магнитной восприимчивости подчиняется закону Кюри-Вейсса:

,

где Cx - постоянная Кюри-Вейсса, а Qx – парамагнитная температура.

Определенные из экспериментальных зависимостей 1/χ = f(T) парамагнитные температуры имеют отрицательные величины, что однозначно определяет знак интеграла обменного взаимодействия J1,

,

где kB - константа Больцмана, z - число соседних катионов Co2+ (12 в вюртцитной структуре), а S=3/2 его спин. Отрицательные величины J1 указывает на то, что твердые растворы Zn1-XCoXO1+d обладают антиферромагнитным упорядочением, сохраняющимся до температуры 625 ± 25 K (точка Нееля).

Наблюдаемые аномалии на зависимостях 1/χ = f(T) и s=f(T), в исследуемом интервале температур могут свидетельствовать об изменениях не только магнитного упорядочения, но и кристаллической структуры. Вероятное объяснение заключается в возможности ZnO образовывать метастабильные полиморфные модификации со структурами сфалерита (цинковой обманки) и NaCl. В ряде случаев полиморфизм ZnO реализуются благодаря кубической сингонии подложек или избыточному давлению, но не исключено, что стабилизирующее влияние способны оказывать катионы кобальта, формирующие оксиды CoO и Co3O4 с кубическими структурами.

Температурные зависимости удельной проводимости lgse=f(1/T) и диэлектрической проницаемости e, измеренные на таблетках спрессованных из Zn1-XCoXO порошков, указывают на изменение характера проводимости выше 650 K. При этом можно выделить два участка с различной величиной энергии активации Е, что особенно хорошо проявляется для низкотемпературного участка Е = 0.57±0.04 эВ, а для высокотемпературного – 1.04±0.04 эВ [1]. Зависимость e(Т) также дает повод предполагать наличие двух поляризационных механизмов, один из которых, возможно, приводит к локальному максимуму, о чем косвенно свидетельствует плоский участок кривой при Т> 670 К.

Страница:  1  2  3  4 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы