Устройство терморегулятора и его виды

* Характеристики указаны без учета присоединенных сигнальных проводов.

Сигнальные провода и изоляционные втулки допускается нагревать до 300°С долговременно и до 350°С кратковременно (до 5мин). При этом возможно потемнение силиконовых изоляционных втулок.

2. Расчет заданной конструкции

2.1 Расчет резистивного моста

Сопротивление терморезистора определяется его т

емпературой. Последняя зависит не только от температуры окружающей среды, но и от проходящего по нему тока. Перегрев платинового термометра током не должен превышать - 0,2 t0 С. Для этого ток не должен превосходить 10 - 15мА. Дальнейший расчет моста будем производить исходя из этого условия.

Для упрощения расчетов положим:

Сопротивление платинового датчика при 0 t0 С равно 1 кОм.

Мост сбалансирован, т.е. R1= R2=1 кОм и R3 (t) = R4=1кОм.

Тогда, чтобы избежать перегрева, общий ток моста не должен превышать 30 мА (по 1 - му закону Кирхгофа). Следовательно:

тогда при I0=30 мА, получим:

R1=R2, следовательно:

Отсюда *.

Для обеспечения нормальной работы сопротивления R1 и R2 выбираем также равными 1 кОм. Тогда Iобщ=15 мА.

В условия сбалансированного моста I1=I2, тогда по 1 - му закону Кирхгофа Iобщ= I1+I2, следовательно Iобщ=2 I1, I1= Iобщ/2=7,5 мА. Тогда UR3 (t) =7.5В.

В общем случае имеем:

Очевидно, что с повышением температуры сопротивление термодатчика будет увеличиваться, следовательно будет увеличиваться и падение напряжения на нём.

Для подстройки и линеаризации ВАХ термометра в одно из плеч включаем подстроечный резистор Rподстр.

2.2 Расчет дифференциального включения ОУ

В данном, конкретном, случае наиболее приемлема схема дифференциального включения операционного усилителя, т.к нам необходимо усиливать разностный сигнал разбалансированного резистивного моста (приложение 1). Дифференциальное включение операционного усилителя показано на рисунке 3.

Дифференциальное включение ОУ

Рисунок 2 - Схема дифференциального включения ОУ.

На рисунке 2 приведена схема дифференциального включения ОУ. Найдем зависимость выходного напряжения ОУ от входных напряжений. Вследствие свойства а) идеального операционного усилителя разность потенциалов между его входами p и n равна нулю. Соотношение между входным напряжением U1 и напряжением Up между неинвертирующим входом и общей шиной определяется коэффициентом деления делителя на резисторах R3 и R4:

Up = U1R4/ (R3+R4) (4)

Поскольку напряжение между инвертирующим входом и общей шиной Un = Up, ток I1 определится соотношением:

I1 = (U2 - Up) / R1 (5)

Вследствие свойства c) идеального ОУ I1=I2. Выходное напряжение усилителя в таком случае равно:

Uвых = Up - I1R2 (6)

Подставив (4) и (5) в (6), получим:

(7)

При выполнении соотношения R1R4= R2R3,Uвых = (U1 - U2) R2/R1 (8)

В данном случае R1= R3=1 кОм и R4= R2=10 кОм, тогда по формуле (8) находим, что коэффициент усиления разностного сигнала примерно равен: R2/R1=10.

2.3 Расчет неинвертирующего включения

В качестве второго каскада преобразователя используем схему с регулируемой ООС, а значит и с регулируемым коэффициентом усиления, что дает нам возможность установить требуемую точность измерения температуры. При неинвертирующем включении входной сигнал подается на не инвертирующий вход ОУ, а на инвертирующий вход через делитель на резисторах R1=1кОм и R2=100кОм поступает сигнал с выхода усилителя (рисунок 3). Здесь коэффициент усиления схемы K найдем, положив U2 = 0. Получим:

form19.gif (1485 bytes)(9),

тогда коэффициент усиления равен - К = 101, такого усиления достаточно, чтобы реализовать индикацию стрелочным прибором.

Неинвертирующее включение ОУ

Рисунок 3 - Неинвертирующее включение ОУ.

Как видно, здесь выходной сигнал синфазен входному. Коэффициент усиления по напряжению не может быть меньше единицы, т.к в цепь ООС кроме подстроечного сопротивления включено и постоянное (приложение 1).

В качестве блока питания можно использовать любой гальванически развязанный от сети блок питания с выходным напряжением не более 15 В, например серийно выпускаемый - БП - 15 ("ВЕСНА").

2.4 Силовая часть

Одним из условий курсового проекта - это обеспечение коммутируемой мощности Pн=1.2кВт. Такое условие выполняет схема представленная на рисунке 4. Ко входу силовой части подключается выход датчика температуры. При достижении установленной температуры, датчик замыкает цепь управления тринистором VS1. Этот тринистор, а вслед за ним и симистор МЫ2 закрываются, а нагреватель Rн обесточивается. При снижении температуры, датчик размыкает цепь, в результате чего тринистор и симистор открываются, а нагреватель Rн подключается к питающей его сети переменного тока. И так - до следующего замыкания датчика.

Рисунок 4 - Силовая часть терморегулятора

Выводы

Выполняя данный курсовой проект, я освоил методы расчета электронных устройств, повторил и закрепил пройденный материал, получил практические навыки работы в системе автоматического проектирования WorkBench 8.0.

Список литературы

1. Виглеб Г. Датчики. М.: МИР, 2009

2. Гершунский Б.С. Справочник по расчету электронных схем. - Киев: высшая школа, 2003.

3. Семенов В.Ю. Приборы и устройства на операционных усилителях. - С. - Петербург: Солон - Р, 2003

Приложение

Рисунок 5 - Схема терморегулятора электрическая принципиальная.

Страница:  1  2 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы