Создание эпоксидных композиций пониженной горючести с электропроводящими и диэлектрическими свойствами
При сгорании ПКМ, не содержащих в своем составе замедлителей горения, кокс имеет мелкопористую однородную структуру, не разделяющуюся без разрушения.
ПКМ, имеющие в своем составе пластификатор ФОМ и наполнители ПФА и ГТ при сгорании образуют кокс, на поверхности которого формируется “шапка” пенококса большая по объему, низкой плотности и высокой пористости. Образовавшийся вспененный слой ко
кса легко разрушается и удаляется, а под ним частично сохраняется структура образца.
В ходе исследований была определена плотность кокса, составляющая для кокса отвержденной эпоксидной смолы 0,0054 г/см3, для кокса композиции ЭД-20 + 25ПФА + 5ГТО + 25ФОМ + 25ПЭПА - 0,0098 г/см3.
Изучение спектров композиции ЭД-20 + 25ПФА + 5ГТО + 25ФОМ +
+ 25ПЭПА и ее кокса показало, сохранение фосфора в коксе, рис. 4. Следует также отметить, что при 400ºC не произошло полной деструкции образцов, о чем свидетельствует сохранность в коксе валентных и деформационных колебаний всех присущих составу групп.
|
|
|
| |
2-ЭД-20+25ПФА+5ГТО+25ФОМ+25ПЭПА.
Образовавшийся кокс термически стабилен, так как при повторном влиянии на него повышенных температур потери массы при 400°C составляют всего 15%.
Теплоизолирующая способность кокса главным образом определяется кратностью вспенивания, поэтому для исследованных образцов была определена кратность вспенивания, табл. 8.
Таблица 8.
Определение кратности вспенивания кокса эпоксидных композиций
|
Состав материала, масс. ч., на 100 масс. ч. ЭД-20 |
Плотность образца, г/см3 |
Плотность кокса, г/см3 |
Кратность вспенивания, % |
|
ЭД-20+15ПЭПА |
1,1 |
0,0054 |
28,35 |
|
ЭД-20+30ПФА +5сажа+30ФОМ+15ПЭПА |
1,13 |
0,345 |
6,75 |
|
ЭД-20+25ПФА +5ГТ+25ФОМ+25ПЭПА |
1,09 |
0,0098 |
35,28 |
|
ЭД-20+35ПФА +30ФОМ+15ПЭПА |
1,07 |
0,0158 |
11,25 |
|
ЭД-20+25ПФА +5ГТО+25ФОМ+25ПЭПА |
0,87 |
0,0052 |
46,95 |
|
ЭД-20+30NH4Cl+5ГТО+30ТХЭФ+15ПЭПА |
Способность материалов к вспениванию зависит, от состава композиции. Так сама отверждённая эпоксидная смола при воздействии температур без добавления увеличивается в объеме в 28 раз, а введение ПФА снижает вдвое кратность вспенивания. Наибольшее влияние на склонность к вспениванию оказывает структура углеродных наполнителей. Так введение, в наполненные ПФА эпоксидные композиции технического углерода (сажи) в количестве 5 масс. ч. имеющего высокую плотность, ещё в меньшей степени способствует увеличению объёма образцов
В то же время, образцы с аналогичным количеством ГТ и ГТО формируют в 1,5 раза больший объём, чем ненаполненная эпоксидная смола и 3-4 раза больше, чем смола, содержащая ПФА.
Введение в состав ЭД-20 наполнителей и пластификаторов ускоряет процесс отверждения, что проявляется в некотором уменьшении времени гелеобразования, табл.9, и максимальной температуры реакции отверждения для практически всех композиций. Это, видимо, связано с адсорбционным взаимодействием компонентов реакционной смеси с развитой поверхностью наполнителя. При введении наполнителя жидкоолигомерная система сначала переходит в неравновесное состояние, что объясняется частичным разрушением упорядоченных образований, существующих в исходных олигомерах, под действием энергетического взаимодействия их с твердой поверхностью.
На следующем этапе формируются адсорбционные слои с более высокой плотностью, чем в жидкой фазе.
Исключение составляют композиция ЭД-20 + 30ПФА + 5сажа + 30ФОМ + ПЭПА с 25% масс. ПЭПА и композиция ЭД-20 + 25ПФА + 5ГТ + 25ФОМ + 25ПЭПА. При введении ГТ максимальная температура возрастает до 124ºC, но ускоряется процесс отверждения, так как время гелеобразования уменьшается с 60 мин. до 20 мин. (табл.10) и время отверждения уменьшается с 75 мин. до 30 мин. Увеличение содержания отвердителя до 25% ПЭПА, то есть сверх стехиометрического соотношения с эпоксидными группами связано с тем, что как ранее показано некоторые из компонентов реагируют и с отвердителем и между собой. При этом с содержанием ПЭПА увеличиваются, вследствие повышения экзотермичности процесса, скорости процесса отверждения, что приводит к уменьшению жизнеспособности композиций, табл. 9.
Таблица 9.
Параметры отверждения наполненных пластифицированных и непластифицированных композиций.
|
Состав материала в масс. ч. на 100 масс. ч. ЭД-20 |
Параметры отверждения |
СО, % (90°C, 2 часа) | ||
|
τгел, мин |
τотв, мин. |
Тмах, °C | ||
|
ЭД-20+15ПЭПА |
60 |
75 |
119 | |
|
ЭД-20+30ПФА+5сажа+30ФОМ+ПЭПА |
30/10 |
55/25 |
73/122 |
86/96 |
|
ЭД-20+30ПФА+5ГТО+30ФОМ+ПЭПА |
30/25 |
59/43 |
62/90 |
83/95 |
|
ЭД-20+30NH4Cl +5ГТО+30ФОМ+ПЭПА |
30/25 |
69/57 |
52/79 |
76/94 |
|
ЭД-20+30 NH4Cl +5ГТО+30ФД+ПЭПА |
30/10 |
65/27 |
62/106 |
74/94 |
|
ЭД-20+25ПФА+5ГТ+25ФОМ+25ПЭПА |
20 |
30 |
124 |
94 |
