Обезжелезивание оборотных и шахтных вод

Четвертая технологическая схема предусматривает обезжелезивание также кислых шахтных вод с большим содержанием механических примесей перед сбросом их в местную гидрографическую сеть, снизив содержание взвешенных веществ до 15 мг/л и железа до 0,5 мг/л, а при наличии фильтров и установок обеззараживания воды — до лимитов ГОСТ 2874-82. Расход эжектируемого воздуха составляет 50 л на 1 м3 воды. Дл

я перевода железа(II) в окисное и образования хлопьев гидроксида предусмотрены камеры хлопьеобразования, рассчитываемые на 30-минутное пребывание воды. Особенностью схемы является применение водоочистных аппаратов (песколовки, отстойники, фильтры и др.) заводского изготовления.

Песколовки ДонУГИ предназначены для предварительной очистки шахтных вод от плавающих грубодисперсных примесей. В состав песколовок входят: фильтр предварительной очистки — объемная коническая самопромывающая сетка с отверстиями шириной 1 м, высотой 20 мм и длиной 1,2 м, в которых формируется ламинарный поток; камера накопления и уплотнения осадка и коллектор для сброса и отведения осветленной воды. В песколовке задерживаются примеси крупностью до 60 30 мкм. Производительность аппарата 300 м3/ч, допустимое давление 0,29 МПа, рабочая площадь по сечению потока 1 м

Тонкослойные отстойники ДонУГИ предназначены для очист-шахтных вод от механических примесей с гидравлической крупностью до 0,1 мм/с и соединений железа с применением реагентов или без них. Они состоят из камеры осветления, где размещены наклонные под углом 60° ячейки высотой 22 мм, длиной 1,7 м и шириной 0,75 м, обеспечивающие ламинарную структуру потока, и камеры накопления и уплотнения осадка. Отстойники выпускают двух производительностей — 60 и 100 м3/ч, рабочей площадью по сечению потока соответственно 2,4 и 4,8 м2.

Пятая технологическая схема (автоматизированная), предложенная ДонУГИ, производительностью 150 м3/ч предназначена для обработки кислых железосодержащих шахтных вод с целью доведения их до питьевого качества. Помимо описанных аппаратов в рассматриваемой схеме предусматриваются бактерицидные установки ОВ-АКХ-1 или электролизеры «Поток» и электрокоагуляторы проточного типа производительностью до 50 м3/ч с 60 алюминиевыми электродами толщиной 2 мм и общей площадью 168 м2, сгруппированными в шесть пакетов. При прохождении воды в течение 10 мин в межэлектродном пространстве шириной 5 см должна обеспечиваться плотность тока 1 А/м2 при напряжении на электродах 3 . 5 В. Ванна электрокоагулятора размером 3,71x1,51x5,4 м одновременно является камерой хлопьеобразования.

В комплект установки входят пять осветлительных фильтров типа ХВ-044-2, выпускаемых Бийским котельным заводом и работающих под давлением 0,49 МПа при скорости фильтрования до 30 м/ч. Фильтрующая загрузка имеет крупность 0,8 . 2 мм; высота ее 1,3 … 1,5 м. Одновременно работают три фильтра, один промывают и один в резерве.

Обезжелезивание конденсата ТЭС

На современных блочных конденсационных электростанциях (КЭС) конденсат турбин составляет не менее 98% количества питательной воды, поэтому качество конденсата в значительной степени определяет качество питательной воды. Конденсат загрязняется как в самом пароводяном цикле электростанции (продукты коррозии оборудования), так и извне (добавочной водой, примесями охлаждающей воды). Количество загрязнений, поступающих в питательную воду с конденсатом, может значительно превышать количество примесей, поступающих с добавочной водой.

Рис. 17.6 Схема водооборота в рабочем цикле КЭС (а) и ТЭЦ (б) с конденсационной турбиной.

1 — парогенератор; 2 — паровая турбина; 3 — генератор; 4 — химводоочистка; 5 — конденсатор турбины; 6, 10 — конденсатный и питательный насос; 7 — установка очистки конденсата турбины; 9 — Деаэратор; 8 — подогреватель турбинного конденсата; 11 — подогреватель питательной воды; 12 и 13 — теплофикационный и производственный потребители пара; 14 — баки возвратного конденсата; 15 — насосы возвратного конденсата; /б — Установка очистки возвратного конденсата; 17 подогреватель добавочной воды

Даже при нормальной работе конденсаторов турбин присос охлаждающей воды составляет не менее 0,002%, а обычно — 0,005 . 0,02% общего расхода конденсата (рис. 17.6).

Железо в пароводяной цикл поступает вследствие коррозии всего тракта. В табл. 17.1 приведено содержание железа в воде всех потоков для одной ТЭЦ Тулэнерго. Как видно из таблицы, в основном железо поступает в котлы от не защищенного от коррозии оборудования химводоочистки и дренажей подогревателей. Железо попадает в воду также в результате отслаивания железо-оксидных отложений в котле при колебаниях температуры на отдельных участках. Вследствие большого количества загрязнений, поступающих в тракт от фильтров обессоливания, представляется целесообразным применение обезжелезивания перед деаэраторами, что позволяет снизить стоимость подогревателя низкого давления (ПНД) путем замены в них трубок из аустенитной стали на трубки из углеродистой стали. Так как температура перед деаэраторами значительно выше, чем на „блочной опреснительной установке (БОУ), то и растворимость железа здесь будет значительно меньше, т. е. железо будет находиться в основном виде железооксидного шлама.

вода очистка обезжелезивание шахтный

Таблица 17.1

В воде ТЭС могут присутствовать разнообразные соединения железа. Основными факторами, определяющими преимущественное содержание в воде оксидов той или иной формы, являются ее температура, рН и окислительно-восстановительный потенциал Eh. Различные равновесия в системе оксиды—железо- вода оценивают следующим образом: при рН=2 .5 преобладает реакция

Fe (ОН)3 -> Fe (ОН)2- + OН-

Или FeOOH + H+ → Fe (OH)2+,

константа равновесия этой реакции при t=20° С:

при рН=5 .11 протекает реакция

FeOOH + Н20 -> Fe (ОН)3.

Молекулы Fe(OH)2 по мере повышения рН диссоциируют по схеме

Fe(OH)2 -> Fe(OH)+ + OH- и Fe (ОН)+-> Fe2+ + ОН-.

При рН=8,5 ионы Fe(OH)+ и Fe2+ присутствуют в одинаковых количествах и обусловливают суммарную концентрацию железа около Ю-4 моль/кг, или 5600 мкг/кг.

В более щелочной области (рН-13) практически все молекулы Fe(OH)2 образуют гидрокомплексы согласно реакции

Fe (ОН)2 + ОН- → Fe (ОН)3-.

Константа равновесия этой реакции при t—25° С

Сон-

При больших значениях рН происходит реакция

Fe (ОН)2 + 20Н- → Fe (ОН)42-

Константа равновесия этой реакции K≈2,910-6 моль/кг.

Соединения железа склонны к образованию коллоидных растворов с частицами кристаллической или аморфной структуры. В ряде работ отмечается, что коллоиды α - FeOOH и Fe(OH)3 характеризуются двумя изоэлектрическими точками при рН=6,7 и 12. Как указывалось выше, для различных соединений железа существуют изоэлектрические точки при следующих значениях рН:

Страница:  1  2  3  4 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы