Математические модели в образовании
Рассмотрение проблем, связанных с формализацией предметной области педагогики, возможно на основе общих этапов математического моделирования. В границах графового моделирования разработаны подходы к организации исследовательской деятельности педагогов: пути исследования учебной книги на полноту, разработки учебных пособий справочного характера, конструирование модели обучения по различным учебн
ым пособиям и словарям, а также комплекс алгоритмов, связанных с обучением группы. Все вышеперечисленные алгоритмы универсальны, т.е. не зависят от того, с какой предметной областью работает педагог, это следует из универсальности моделей, на основе которых они построены.
Следовательно, обобщение исторического опыта и использование методов математического моделирования в педагогических науках, классификации применяемых в педагогике методов математического моделирования, описание функций математических моделей в образовательном процессе демонстрируют эффективность применения методов математического моделирования в образовательном процессе.
Суть познавательного процесса заключается в построении образа изучаемого объекта учащимся. Фиксирование такого образа с его основными свойствами и отношениями удобнее выполнять в математической форме, используя структурные или функциональные модели.
Структурные (не метрические) модели не отображают чисто количественные зависимости между величинами, а фиксируют разнообразные структурные отношения между ними (иерархию ценностей или мотивов, предпочтения в социальной группе и т.п.). В дидактике они используются с целью анализа структур процесса обучения (логической структуры учебного материала, структур познавательной деятельности учащихся, дидактических структур урока и т.д.). Функциональные (метрические) модели применяются для описания динамики исследуемых процессов, предсказания происходящих в них изменений. Такие модели называют прогностическими (трендовыми). Они описывают различные взаимосвязи между величинами с помощью функций и предназначены для изучения не структуры систем, а характера их поведения.
Математические модели представляют собой многофункциональное дидактическое средство, способствующее решению разнообразных педагогических задач. Использование математических моделей способствует достижению не только образовательных, но и развивающих дидактических целей. Это говорит о том, что модели, связанные с конкретным содержанием учебного предмета, помогают его представить ярко, наглядно, соединив строгость научных рассуждений с научным анализом структур изучаемых процессов и явлений. Модели закономерностей процесса обучения позволяют управлять познавательной деятельностью учащихся, учитывая степень влияния различных факторов, определяющих ее успешность.
Применения математической модели для подготовки компетентного специалиста
В качестве условия применения математических методов с точки зрения совершенствования качества образования определено содержание и характер математического образования в педагогическом процессе и выделен принцип педагогико-прикладной направленности математического образования, который взаимодействует с принципом образовательного гуманизма и является одним из методологических принципов при анализе качества педагогической деятельности. Принцип педагогико-прикладной направленности позволяет обратить внимание на необходимость изучения педагогическими факультетами специального курса «Математическая теория педагогических исследований», который может входить в общий курс высшей математики для студентов нематематических специальностей.
Разработанная интегративная модель межпредметного комплекса «математика
педагогика
кибернетика» позволяет реализовать указанное направление (рисунок 1)
Предлагаемая модель построена на основе объединения областей математики, педагогики и кибернетики, включая уровни интеграции учебного предмета, кафедры, области педагогических исследований и систему непрерывного образования. Способом реализации данной модели выступает указанный спецкурс. Модель поможет подготовить компетентного специалиста, владеющего математико-педагогическими методиками, коррекционно-прогностическими, развивающими технологиями обучения, где он способен грамотно оценить качество образовательного процесса.
Одним из важнейших направлений повышения качества образования является совершенствование средств, методов и приемов диагностики, поиск эффективных инструментариев для оценки качества тех явлений в педагогической практике, которые влияют на становление и развитие личности субъектов образования. В связи с этим актуальной является разработка методик применения математических методов в личностно-ориентированном образовании.
Рис. 1. Интегративная модель межпредметного комплекса «математика
педагогика
кибернетика»
Построение формализованной математической модели оптимизации
В экспериментальной методике «Оптимизация учебного курса в личностно-ориентированном образовании» формулируется задача оптимизации курса определенного предмета для студентов высшего профессионального образования. Для построения формализованной математической модели оптимизации в виде системы ограничений и целевой функции был проведен опрос студентов нескольких групп. Был использован экспертный метод для учета возможностей и способностей этих студентов в приобретении знаний, навыков и умений на различных видах занятий (лекциях, практических, консультациях).
Полученные экспериментальные данные были приведены к норме относительно структуры действующего курса. Для этого рассмотрено действующее соотношение видов занятий курса: 32 лекции, 31 практическое занятие, 7 консультаций. Для данной разбивки часового фонда с учетом приведенных экспериментальных данных можно оценить среднюю информативность одного занятия каждого вида. В соответствии с принятым критерием оптимальности составлена целевая функция Z и ограничивающие условия:
Х1
0, Х2
0, Х3
0.
2,8Х1+0,2Х2+0Х3
100
0Х1+1,1Х2+Х3
100
0Х1+0,1Х2+1,5Х3
100
Z=Х1+Х2+Х3
max
Задача оптимизации свелась к стандартной задаче линейного программирования: определить значения неизвестных Х1, Х2, Х3, удовлетворяющие трем ограничениям и максимизирующие целевую функцию. Решение этой задачи осуществлялось симплекс-методом, одним из основных методов математического (линейного) программирования.
Другие рефераты на тему «Педагогика»:
- Современные формы взаимодействия воспитателя ДОУ и семьи детей старшего дошкольного возраста
- Изучение системы фонетических средств языка и фонологической системы у детей со стертой дизартрией
- Педагогика сотрудничества: за и против
- Исследование динамики уровня тревожности у детей младшего школьного возраста
- Познание неживой природы путём экспериментирования
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения
