Особенности аэромассы

Расчет количества аэромассы в лесных ПТК вызывает наибольшие сложности. Это связано с тем, чтореальных определений высоты верхней границы фаций с лесной растительностью еще никто не производил. В экологической литературе имеются сведения о наблюдениях на специальных вышках, но они обычно лишь не намного выше лесного покрова, и поэтому эти данные непригодны для определения верхней границы. В нас

тоящее время количество метеорологических вышек, превышающих высоту леса в два раза и более, во всем мире не больше одного-двух десятков. При этом на них не производится тот комплекс наблюдений, который позволяет определить верхнюю границу фаций с лесной растительностью. Поэтому при расчете количества аэромассы в лесных ПТК приходится удовлетворяться предположением, что так же, как в ПТК с травянистой, кустарниковой и низкорослой лесной растительностью, в лесных фациях высота верхней границы проходит на двукратной высоте наиболее высоких деревьев.

Но как производить расчет аэромасс в тех ПТК, где растительность отсутствует или играет незначительную роль, т. е. в обнажениях, пустынях и ледниках? Этот же вопрос относится к тем ПТК, которые зимой полностью покрыты снегом, т. е. к степным, луговым, полупустынным фациям. Микроклимат этих ПТК изучен значительно лучше, чем в лесных фациях. Наблюдения показывают, что верхняя граница ПТК в ясные безветренные дни проходит на высоте 1—3 м. Соответственно количество аэромассы в этих ПТК колеблется в пределах 10—35 т/га.

Связь количества аэромассы с мощностью ПТК (природно-территориального комплекса), плотностью воздуха и скоростью ветра

Прежде чем проанализировать связь аэромассы с другими геомассами, напомним, что количество аэромассы зависит от плотности воздуха и мощности (толщины) надземной части вертикального профиля ПТК. Если кроме «мгновенного» количества рассчитывать еще и количество аэромассы в какой-то определенный промежуток времени, то к названным факторам необходимо добавить скорость ветра и интенсивность турбулентного потока.

Как уже отмечалось, плотность воздуха зависит от целого ряда параметров, но наиболее важными из них являются высота над уровнем моря и температура. Небольшое изменение турбулентности или скорости ветра приводит к такому изменению высоты положения этой границы, что количество аэромассы в том или ином состоянии ПТК может уменьшаться на 20—30%, а при сильном ветре или обильных осадках, даже вдвое.

Таким образом, «мгновенное» количество аэромассы в основном зависит от положения верхней границы ПТК. Очень существен вклад ветра в реальное количество аэромассы, находящейся в данном ПТК в какой-либо отрезок времени. «Мгновенные» (в течение 1 с) количества аэромассы превосходят фитомассы и гидромассы, но их на 1—3 порядка меньше, чем педомасс и литомасс в метровом слое, и на 3—5 порядков меньше, чем литомасс в слое 15—20 м. Однако в отличие от литомассы и педомассы, которые в течение 109—1010 с (100— 1000 лет) практически стабильны, аэромассы относятся к активным геомассам, и их количество быстро меняется. Даже при скорости ветра всего лишь 1 м/с за 1 сут через ПТК проходит большее количество воздуха, чем того вещества, которое находится в метровом слое почвы. Значительный объем воздуха, проходящий через ПТК, определяет высокую энергию аэромасс и их сильнейшее влияние на остальные геомассы и состояние как отдельных компонентов, так и природно-территориального комплекса в целом. При штиле и малых скоростях ветра находящиеся в ПТК фитомассы и педомассы (а иногда и гидромассы) интенсивно изменяют свойства воздушных масс — нагревают или охлаждают их, способствуют или препятствуют вертикальным и горизонтальным перемещениям и в итоге преобразуют в аэромассы конкретных ПТК. В этом отношении аэромассы можно сравнить с почвой. Если почва является результатом взаимодействия в основном растительности и горных пород, то аэромассы опять же в основном являются результатом взаимодействия воздушных масс с растительностью. Разница заключается в том, что при формировании почв растительность в течение длительного времени взаимодействует с одной и той же горной породой, которая в связи со своей большой массой, намного превосходящей фитомассу, обладает большой инертностью, и для ее изменения необходимы сотни и тысячи лет. В случае аэромасс растительность или просто подстилающая поверхность контактирует с очень мобильным, быстро изменяющимся во времени компонентом — воздушными массами, имеющими небольшую массу и поэтому обладающие незначительной инертностью. Часто аэромассы, находящиеся в состоянии трансформации данным ПТК, еще не успели приобрести основные свои свойства, начинают вновь трансформироваться данным ПТК в результате вторжения иных воздушных масс, причем иногда в противоположном (по сравнению с предыдущими условиями) направлении.

При малых скоростях ветра происходит существенное изменение температуры воздуха и других свойств аэромасс до значительной высоты. При больших скоростях ветра через ПТК проходят большие объемы воздушных масс, и он как бы не успевает их «переработать» — трансформировать. Поэтому верхняя граница ПТК в этом случае расположена относительно низко и в отдельные состояния ПТК проходит на уровне верхушек растений. Эффективность трансформации воздушных масс природно-территориальным комплексом определяется не только количеством аэромассы, но и их качественными изменениями. Эти последние могут быть связаны с колебаниями газового состава (например, содержания СО2) и ряда метеорологических элементов: температуры воздуха, скорости ветра, а также плотности воздуха. Детальные исследования и последующие расчеты позволяют получить ряд интересных результатов, в частности:

1. Проклассифицировать ПТК и их состояния по силе трансформации воздушных масс.

2. Сравнить эти значения с геомассами и структурой ПТК и на их основе, а также по данным о состоянии воздушных масс получить представление о трансформации, а также определить конкретные температуры воздуха в разных ПТК и в разных состояниях.

Последний результат связан с решением так называемой обратной задачи по аэромассе. Прямой задачей в этом случае будет определение по данным температуры воздуха, скорости ветра и ряда других параметров состояния аэромасс и расчет показателей эффективности их трансформации. Полученные таким образом экспериментальные данные позволят установить зависимость между характеристиками аэромасс и этими показателями.

В связи с сильной изменчивостью положения верхней границы ПТК во времени и с трудностью или даже невозможностью ее определения для ряда природно-территориальных комплексов расчет суммарного количества аэромассы носит в большинстве случаев ориентировочный характер. Тем не менее определение ее количества позволяет сравнить роль этой геомассы с другими в структуре и функционировании ПТК, понять ландшафтно-геофизические особенности аэромасс. Изучение свойств аэромасс вызывает большие затруднения, во-первых, из-за аморфности и не видимой невооруженным глазом структуры, во-вторых, в связи с очень большой лабильностью, связанной с небольшой массой и плотностью и определяемой ими малой инертностью, и, в-третьих, из-за необходимости длительных инструментальных исследований, производимых по всему вертикальному профилю ПТК. Аэромассы относятся к тем геомассам, для которых масса, плотность и другие характеристики не столь значительны, как их состояние, определяемое структурой, скоростью ветра, газовым составом, нахождением в определенных частях ПТК. Аэромассы и их свойства зачастую связаны не с конкретными, а с весьма удаленными ПТК. Однако чем дольше находятся аэромассы на конкретной территории, в каком-либо природно-территориальном комплексе, тем больше они трансформируются. ПТК образно можно рассматривать как «машину», которая трансформирует свойства аэромасс. Интенсивность трансформации воздушных масс увеличивается с уменьшением скорости ветра и увеличением количества фитомассы. Воздушные массы в ПТК можно рассматривать как зеркальный аналог почвы. Если почва является в основном результатом взаимодействия биогенного компонента с горной породой, то аэромассы и их свойства определяются контактом растительности и воздушных масс. Так же как в почве, наиболее характерные для нее свойства наблюдаются в приповерхностном слое, а выше (для почв — ниже) особенности аэромасс размываются. Исследование аэромасс и их свойств необходимо для решения так называемых обратных задач, когда по типу воздушных масс, находящихся в данный момент на данной территории, другим геомассам и характеру вертикальной структуры ПТК можно без детальных измерений рассчитать характеристики аэромасс в данном ПТК.

Страница:  1  2  3  4 


Другие рефераты на тему «География и экономическая география»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы