Постулаты квантовой механики

(2.5)

и, соответственно, его проекции равны

(2.6)

(2.7)

(2.8

- кинетическая энергия Т, скалярная вели

чина, которая в поступательном движении связана и с массой и импульсом

;

для одномерного вращения вокруг оси (например, z) справедлива подобная же формула, где масса заменена моментом инерции Iz, а импульс – его моментом :

- потенциальная энергия, т.е. скалярное силовое поле, задаваемое функци-ей координат , в котором движется частица;

- полная энергия Е, равная сумме кинетической и потенциальной энергий

2.2.3. С учетом общих требований, предъявляемых к операторам квинтовой механики, постулируются простейшие операторы, а именно: операторы координат, определяющие положение частицы, и импульса ее,

- оператор координаты совпадает с умножением на саму координату q, т.е.: , или угол,

или, в общем виде ;

- оператор импульса имеет дифференциальную форму

(2.9)

где постоянная Планка Дж·с, и операторы координат импульса соответственно равны:

, , (2.10)

Введение в оператор, мнимой единицы превращает его в самосопряженный т.е. отвечающий условию (1.5).

2.2.4. Остальные операторы строятся по формулам классической механики, где вместо координат и импульсов используются их операторы, Это утверждение можно считать следствием макроскопического устройства приборов по законам классической физики. Построим операторы и для одной частицы:

- операторы момента импульса и его проекций:

, (2.11)

, (2.12)

, (2.13)

(2.14)

В полярных координатах (например, сферических) соответствующие производные декартовых координат следует заменить их выражениями через полярные переменные;

- оператор кинетической энергии в декартовых координатах:

(2.15)

Переходя к полярным координатам, лапласиан преобразуют к ним. Для случая вращения по поверхности без радиальной компоненты движения, как это имеет место при вращении двухатомной молекулы вокруг центра масс, можно записать:

(2.16)

оператор потенциальной энергии, подобно координате, дается просто умножением на функцию потенциальной энергии, т.е.

, или (2.17)

оператор полной энергии называют гамильтонианом, в честь английского ученого Гамильтона, оставившего фундаментальные труды в механике, астрономии и математике, и обозначают его

(2.18)

2.3. Постулат 3. Уравнение Шрёдингера

2.3.1. Эволюция системы определяется, с одной стороны, ее мгновенным состоянием и, следовательно, волновой функцией. С другой стороны, изменение состояния во времени зависит от "скорости" эволюции, т.е. от производной волновой функции по времени. Вместе с тем такое изменение связано с каким-либо взаимодействием с окружающими систему объектами и, следовательно, с обменом энергией. Это означает, что при описании эволюции необходимо связать саму волновую функцию, ее производную по времени и гамильтониан, в общем случае зависящий от координат и времени.

2.3.2. Такая связь вводится в виде временнớго уравнения Шрёдингера, которое является одним из постулатов квантовой механики и записывается в форме:

(2.19)

Возможные функции состояния системы удовлетворяют уравнению (2.19)

2.3.3. В том случае, когда гамильтониан Н, а, следовательно, и энергия системы не зависят от времени, временное уравнение Шредингера легко преобразуется в стационарное уравнение Шредингера, имеющее структуру операторного уравнения (1.1).

Произведем соответствующие преобразования. Для этого положим, что гамильтониан не включает времени в явном виде и зависит только от координат

(2.20.)

Это позволяет нам использовать метод Фурье для разделения переменных и представить волновую функцию в виде двух сомножителей, одного покоординатного и другого временного:

(2.21)

Подставим результат в (2.20) и перенесем влево от , а влево от оператора дифференцирования по времени, так как по отношению к этим операторам выносимые множители условно постоянны и не преобразуются:

,

(2.22)

Теперь разделим переменные в уравнении (2.22)

(2.23)

Страница:  1  2  3 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы