Дифференциальное исчисление функций

Заработок на криптовалютах по сигналам. Больше 100% годовых!

Заработок на криптовалютах по сигналам

Трейдинг криптовалют на полном автомате по криптосигналам. Сигналы из первых рук от мощного торгового робота и команды из реальных профессиональных трейдеров с опытом трейдинга более 7 лет. Удобная система мгновенных уведомлений о новых сигналах в Телеграмм. Сопровождение сделок и индивидуальная помощь каждому. Сигналы просты для понимания как для начинающих, так и для опытных трейдеров. Акция. Посетителям нашего сайта первый месяц абсолютно бесплатно.

Обращайтесть в телеграм LegionCryptoSupport

Содержание

1. Введение в анализ и дифференциальное исчисление функции одного переменного

2. Дифференциальное исчисление функций и его приложение

3. Интегральное исчисление функции одного переменного

1. Введение в анализ и дифференциальное исчисление функции одного переменного

1. Вычислить предел: .

Решение.

При имеем

Следовательно,

2. Найти асимптоты функции: .

Решение.

Очевидно, что функция не определена при .

Отсюда получаем, что

Следовательно, – вертикальная асимптота.

Теперь найдем наклонные асимптоты.

Следовательно, – наклонная асимптота при .

3. Определить глобальные экстремумы: при .

Решение.

Известно, что глобальные экстремумы функции на отрезке достигаются или в критических точках, принадлежащих отрезку, или на концах отрезка. Поэтому сначала находим .

.

А затем находим критические точки.

Теперь найдем значение функции на концах отрезка.

.

Сравниваем значения и получаем:

4. Исследовать на монотонность, найти локальные экстремумы и построить эскиз графика функции: .

Решение.

Сначала находим .

.

Затем находим критические точки.

x

–3

0

0

+

0

+

убывает

min

возрастает

возрастает

возрастает

Отсюда следует, что функция

возрастает при ,

убывает при .

Точка – локальный минимум.

5. Найти промежутки выпуклости и точки перегиба функции: .

Решение

Чтобы найти промежутки выпуклости и точки перегиба, найдем вторую производную функции.

.

.

.

x

–2

1

0

0

+

вогнутая

перегиб

выпуклая

перегиб

вогнутая

Отсюда следует, что функция

выпуклая при ,

вогнутая при .

Точки , – точки перегиба.

2. Дифференциальное исчисление функций и его приложение»

1. Провести полное исследование свойств и построить эскиз графика функции .

Решение.

1) Область определения функции

.

2) Функция не является четной или нечетной, так как

.

3) Теперь найдем точки пересечения с осями:

а) с оx: , б) с oy .

4) Теперь найдем асимптоты.

а)

Страница:  1  2  3 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2023 - www.refsru.com - рефераты, курсовые и дипломные работы