Призма

Заработок на криптовалютах по сигналам. Больше 100% годовых!

Заработок на криптовалютах по сигналам

Трейдинг криптовалют на полном автомате по криптосигналам. Сигналы из первых рук от мощного торгового робота и команды из реальных профессиональных трейдеров с опытом трейдинга более 7 лет. Удобная система мгновенных уведомлений о новых сигналах в Телеграмм. Сопровождение сделок и индивидуальная помощь каждому. Сигналы просты для понимания как для начинающих, так и для опытных трейдеров. Акция. Посетителям нашего сайта первый месяц абсолютно бесплатно.

Обращайтесть в телеграм LegionCryptoSupport

Длины трех ребер прямоугольного параллелепипеда, имеющих общий конец, называют его измерениями. Например, имеются спичечные коробки с измерениями 15, 35, 50 мм. Куб - прямоугольный параллелепипед с равными измерениями. Все шесть граней куба - равные квадраты.

Рассмотрим некоторые свойства параллелепипеда.

Теорема. Параллелепипед симметричен относительно середины его диагонали. <

p>Дано: АС1(рис. ) - произвольный параллелепипед, В1D - его диагональ, точка О - середина этой диагонали.

Доказать: Z0(AC1) = AC1.

Доказательство. Рассмотрим центральную симметрию Z0с центром в точке О. Центральная симметрия - перемещение (сохраняет расстояния), отображающее каждый луч на противоположный ему луч. Поэтому

B1= Z0(D), B1C1= Z0(DA), DA = B1C1, C1 = Z0(A).

Аналогично можно показать, что точки D1 и В, А1и С также центрально-симметричны. Таким образом, симметрия отображает поверхность параллелепипеда на себя. Внутренность параллелепипеда также отображает на себя (параллелепипед можно рассматривать как пересечение полупро странств, образованных плоскостями его граней, а перемещение отображает пересечение фигур на пересечение их образов).

Таким образом, центральная симметрия Z0отображает параллелепипед на себя: Z0(AC1) = AC1. Теорема доказана.

Из теоремы непосредственно следуют важные свойства параллелепипеда:

1. Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через середину его диагонали, делится ею пополам; в частности, все диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.

Так, на рисунке A1O=OC, B1O=OD, D1O=OB, AO=OC1, а также MO=ON, где M`A1B1C1D1, N`ABCD, O`MN.

2. Противолежащие грани параллелепипеда параллельны и равны.

Так, на рисунке AA1D1D=BB1C1C, (AA1D1)П(BB1C1).

Рассмотренными свойствами обладает произвольный параллелепипед. Докажем одно свойство прямоугольного параллелепипеда.

Теорема. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадрата трех его измерений.

Дано: АС1- прямоугольный параллелепипед, чABч= a, чADч=b, чAA1ч=c - его измерения, чAC1ч=d - длина его диагонали.

Доказать: d2=a2+b2+c2.

Доказательство. Введем систему координат так, как показано на рисунке , приняв за ее начало вершину А, за произвольный базис тройку векторов V, b, c. Тогда вектор AC имеет координаты (a;b;c), и, следовательно,

є

чAC ч 2= d2=a2+b2+c2.

Теорема доказана.

3. Симметрия в пространстве

Теорема, в которой утверждается, что все диагонали параллелепипеда пересекаются в одной точке О, в которой они делятся пополам (рис ), напоминает аналогичное предложение из планиметрии: диагонали параллелограмма пересекаются в точке О, являющейся их серединой (рис. ). Точка О - это центр симметрии параллелограмма. Аналогично называют и точку О центром симметрии параллелепипеда, так как вершины А и С1, В и D1, С и А1, D и В1симметричны относительно точки О. Впервые понятие центра симметрии встречается в ХVI в. в одной из теорем Клавиуса, гласящей: если параллелепипед рассекается плоскостью, проходящей через центр, то он разбивается пополам и, наоборот, если параллелепипед рассекается пополам, то плоскость проходит через центр. Лежандр, который впервые ввел в элементарную геометрию элементы учения о симметрии, говорит только о симметрии относительно плоскости и дает следующее определение: две точки A и B симметричны относительно плоскости a, если последняя перпендикулярна к АВ в середине этого отрезка. Лежандр показывает, что у прямого параллелепипеда имеются 3 плоскости симметрии, перпендикулярные к ребрам, а у куба 9 плоскостей симметрии, из которых 3 перпендикулярны к ребрам, а другие 6 проходят через диагонали граней.

Призма

Задачи

Литература

1. Глейзер Г.Д. Геометрия. Учебное пособие для старших классов. М., Просвещение, 1994.

2. Погорелов А.В. Геометрия. Учебное пособие для 7-11 классов. М., Просвещение, 1992.

Страница:  1  2  3  4 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2022 - www.refsru.com - рефераты, курсовые и дипломные работы