Учение о параллельности. Открытие неевклидовой геометрии
§ При продолжении двух прямых от точки их пересечения расстояние между ними неограниченно возрастает.
Попытки доказательства
Математики с давних времён пытались «улучшить Евклида» – либо исключить пятый постулат из числа исходных утверждений, то есть доказать его, опираясь на остальные постулаты и аксиомы, либо заменить его другим, столь же очевидным, как другие постулаты. Надежд
у на достижимость этого результата поддерживало то, что IV постулат Евклида (все прямые углы равны) действительно оказался лишним – он был строго доказан как теорема и исключён из перечня аксиом.
За два тысячелетия было предложено много доказательств пятого постулата, но в каждом из них рано или поздно обнаруживался порочный круг: оказывалось, что среди явных или неявных посылок содержится утверждение, которое не удаётся доказать без использования того же пятого постулата.
Прокл (V век н.э.) в «Комментарии к I книге Начал Евклида» сообщает, что такое доказательство предложил Клавдий Птолемей, критикует его доказательство и предлагает своё собственное. В несколько упрощённом виде его можно описать так: пусть прямая b проходит через заданную точку A параллельно прямой a; докажем, что любая другая прямая c, проведенная через ту же точку, пересекается с прямой a. Как упоминалось выше, расстояние между прямыми от точки их пересечения возрастает неограниченно (ещё раз подчеркнём, что доказательство этой теоремы не опирается на V постулат). Но тогда в конце концов расстояние между c и b превысит расстояние между параллельными прямыми, то есть прямые c и a пересекутся.
Приведенное доказательство опирается на допущение, что расстояние между двумя параллельными прямыми постоянно (или, по крайней мере, ограничено). Впоследствии выяснилось, что это допущение равносильно V постулату.
После упадка античной культуры V постулатом занялись математики стран ислама. Доказательство ал-Джаухари, ученика ал-Хорезми (IX век), неявно подразумевало: если при пересечении двух прямых какой-либо третьей накрест-лежащие углы равны, то же имеет место при пересечении тех же двух прямых любой другой. И это допущение равносильно V постулату.
Сабит ибн Курра (IX век) дал два доказательства; в первом он опирается на предположение, что если две прямые удаляются друг от друга с одной стороны, они обязательно приближаются с другой стороны. Во втором – исходит из существования равноотстоящих прямых, причём этот факт ибн Курра пытается вывести из представления о «простом движении», т.е. о равномерном движении на фиксированном расстоянии от прямой (ему представляется очевидным, что траектория такого движения – тоже прямая). Каждое из двух упомянутых утверждений Ибн Курры эквивалентно V постулату.
Аналогичную ошибку сделал ибн ал-Хайсам, но он впервые рассмотрел фигуру, позже получившую название «четырёхугольник Ламберта» – четырёхугольник, у которого три внутренних угла – прямые. Он сформулировал три возможных варианта для четвёртого угла: острый, прямой, тупой. Обсуждение этих трёх гипотез, в разных вариантах, многократно возникало в позднейших исследованиях.
Поэт и математик Омар Хайям подверг критике попытки ввести в геометрию механическое движение. Он предложил заменить V постулат на другой, более простой: две сходящиеся прямые пересекаются, и невозможно, чтобы две сходящиеся прямые расходились в направлении схождения. Каждая из двух частей этого утверждения равносильна постулату Евклида.
Ал-Абхари предложил доказательство, сходное с доказательством ал-Джаухари. (Это доказательство приводит в своей книге ас-Самарканди, и ряд исследователей считал его доказательством ас-Самарканди.) Он исходит из верного в абсолютной геометрии утверждения о том, что для всякой прямой, пересекающей стороны данного угла, может быть построена ещё одна прямая, пересекающая стороны этого же угла и отстоящая от его вершины дальше, чем первая. Но из этого утверждения он делает логически необоснованный вывод о том, что через всякую точку внутри данного угла можно провести прямую, пересекающую обе стороны этого угла, – и основывает на этом последнем утверждении, эквивалентном V постулату, всё дальнейшее доказательство.
Насир ад-Дин ат-Туси предложил построение, аналогичное построению Омара Хайяма. Отметим, что сочинения ат-Туси стали известны Джону Валлису, и тем самым сыграли роль в развёртывании исследований по неевклидовой геометрии в Европе.
Первую в Европе известную нам попытку доказательства аксиомы параллельности Евклида предложил живший вПровансе (Франция) Герсонид (он же Леви бен Гершом, XIV век). Его доказательство опиралось на утверждение о существовании прямоугольника.
К XVI веку относится доказательство учёного-иезуита Христофора Клавиуса. Доказательство его, как и у ибн Курры, основывалось на утверждении, что линия, равноотстоящая от прямой – тоже прямая.
Валлис в 1693 году в одной из своих работ воспроизводит перевод сочинения ат-Туси и предлагает эквивалентную, но более простую формулировку: существуют подобные, но не равные фигуры. Клеро в своих «Началах геометрии» (1741), как и Герсонид, вместо V постулата взял его эквивалент «существует прямоугольник».
В целом можно сказать, что все перечисленные попытки принесли немалую пользу: была установлена связь между V постулатом и другими утверждениями, были отчётливо сформулированы две альтернативы V постулату – гипотезы острого и тупого угла.
Первые наброски неевклидовой геометрии
Глубокое исследование V постулата, основанное на совершенно оригинальном принципе, провёл в 1733 году итальянский монах-иезуит, преподаватель математики Джироламо Саккери. Он опубликовал труд под названием «Евклид, очищенный от всех пятен, или же геометрическая попытка установить самые первые начала всей геометрии». Идея Саккери состояла в том, чтобы заменить V постулат противоположным утверждением, вывести из новой системы аксиом как можно больше следствий, тем самым построив «ложную геометрию», и найти в этой геометрии противоречия или заведомо неприемлемые положения. Тогда справедливость V постулата будет доказана от противного.
Саккери рассматривает всё те же три гипотезы о 4-м угле четырёхугольника Ламберта. Гипотезу тупого угла он отверг сразу по формальным соображениям. Легко показать, что в этом случае вообще все прямые пересекаются, а тогда можно заключить, что V постулат Евклида справедлив – ведь он как раз и утверждает, что при некоторых условиях прямые пересекаются. Отсюда делается вывод, что «гипотеза тупого угла всегда целиком ложна, так как она сама себя разрушает».
После этого Саккери переходит к опровержению «гипотезы острого угла», и здесь его исследование гораздо интереснее. Он допускает, что она верна, и, одно за другим, доказывает целый ряд следствий. Сам того не подозревая, он продвигается довольно далеко в построении геометрии Лобачевского. Многие теоремы, доказанные Саккери, выглядят интуитивно неприемлемыми, но он продолжает цепочку теорем. Наконец, Саккери доказывает, что в «ложной геометрии» любые две прямые или пересекаются, или имеют общий перпендикуляр, по обе стороны от которого они удаляются друг от друга, или же удаляются друг от друга с одной стороны и неограниченно сближаются с другой. В этом месте Саккери делает неожиданный вывод: «гипотеза острого угла совершенно ложна, так как противоречит природе прямой линии».
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах