Нестандартные методы решения задач по математике
Следствие 31 Если --- возрастающая (или убывающая) функция на области значений функций и , то уравнения и равносильны.
Также следует отметить, что при решении функционального уравнения необходимо внимательно рассматривать случай, когда функция является четной.
Теорема 32 Если четная функция определена на отрезке и возрастает (или убывает) при , то на данном отрезке уравнение равносильно совокупности уравнений и при условии, что и .
Доказательство проводится по аналогии с доказательством предыдущей теоремы. При этом используется четность функции , т.е. если , то .
Анализ функции на монотонность удобно осуществлять с помощью производной: если функция дифференцируема на отрезке и (), то функция является возрастающей (убывающей) на данном отрезке.
Задачи и решения
Пример 33 Решить уравнение
где квадратный корень берется раз ().
Решение. Из условия задачи следует, что . Пусть , тогда уравнение принимает вид функционального уравнения .
Так как при функция возрастает и , то уравнение равносильно уравнению , т.е. , положительным решением которого является .
Ответ: .
Пример 34 Решить уравнение
Решение. Перепишем исходное уравнение в виде функционального уравнения типа , т.е.
где .
Поскольку для любого значения , то функция является возрастающей на всей числовой оси . Следовательно, вместо функционального уравнения можно рассматривать равносильное ему уравнение , для которого является решением.
Ответ: .
Пример 35 Решить уравнение
Решение. Преобразуем уравнение следующим образом:
Отсюда получаем уравнение
Пусть , тогда уравнение принимает вид
Так как функция является убывающей на всей числовой оси , то (согласно Следствию ) уравнение равносильно уравнению , т.е. уравнение равносильно уравнению . Отсюда следует уравнение , которое имеет единственный действительный корень .
Ответ: .
Пример 36 Решить уравнение
Решение. Поскольку при всех , то областью допустимых значений уравнения является множество всех действительных чисел.
Положив , и , увидим, что заданное уравнение принимает вид , где и . Так как из следует, что
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах