Асимптоты (определение, виды, правила нахождения)
Введение
Асимптота, так называемая прямая или кривая линия, которая, будучи продолжена, приближается к другой кривой, но никогда не пересекает ее, так что расстояние между ними делается бесконечно малой величиной.
Понятие асимптоты играет важную роль в математическом анализе. Они проводятся при изучении свойств многих кривых (гиперболы, конхоиды, логарифмич. линии, циссоиды и д
р.).
4
2. Нахождение асимптоты
Пусть функция f (x) определена для всех x > а (соответственно для всех
x < а). Если существуют такие числа k и l, что f(x) - kx - l = 0 при х ® + ¥ (соответственно при х ® - ¥), то прямая
y = kx + l
называется асимптотой графика функции f (x) при x ® + ¥ (соответственно при х ® - ¥).
Существование асимптоты графика функции означает, что при х ® + ¥
(или х ® - ¥) функция ведёт себя «почти как линейная функция», то есть отличается от линейной функции на бесконечно малую.
x- 3x - 2
Найдём, например, асимптоту графика функции y = x +1
Разделив числитель на знаменатель по правилу деления многочленов,
2 2
получим y = x - 4 + x + 1 Так как x + 1 = 0 при х ® ± ¥, то прямая y = x-4
является асимптотой графика данной функции как при х ® + ¥,
так и при х ® - ¥.
5
2.1 Геометрический смысл асимптоты
Рассмотрим геометрический смысл асимптоты. Пусть М = (x, f (x)) – точка графика функции f, М- проекция этой точки на ось Ох, АВ – асимптота,
q - угол между асимптотой и положительным направлением оси Ох, q ¹,
MP – перпендикуляр, опущенный из точки М на асимптоту АВ, Q – точка пересечения прямой ММс асимптотой АВ (рис.1).
(рис.1)
Тогда ММ= f (x), QM= kx + l, MQ = MM- QM= f (x) – (kx +l),
MP = MQ cos q. Таким образом, MP отличается от MQ лишь на не равный нулю множитель cos q, поэтому условия MQ ® 0 и MP ® 0 при х ® + ¥ (соответственно при х ® - ¥) эквивалентны, то есть lim MQ = 0,
то и lim MP = 0, и наоборот. х ® + ¥
х ® + ¥
Отсюда следует, что асимптота может быть определена как прямая, расстояние до которой от графика функции, то есть отрезок МР, стремится к нулю, когда точка М = (x, f (x)) «стремится, оставаясь на графике, в бесконечность» (при х ® + ¥ или, соответственно, х ® - ¥).
6
2.2 Общий метод отыскания асимптоты
Укажем теперь общий метод отыскания асимптоты, то есть способ определения коэффициентов k и l в уравнении y = kx + l.
Будем рассматривать для определённости лишь случай х ® + ¥ (при х ® - ¥ рассуждения проводятся аналогично). Пусть график функции f имеет асимптоту y = kx + l при х ® + ¥. Тогда, по определению,
f (x) = kx + l + 0
Разделим обе части равенства f (x) = kx + l + 0 на х и перейдём к пределу при х ® + ¥. Тогда
lim = k.
х ® + ¥
Используя найденное значение k, получим из f (x) = kx + l + 0 для определения l формулу
l = lim (f (x) – kx).
х ® + ¥
Справедливо и обратное утверждение: если существуют такие числа k и l, что выполняется условие l = lim (f (x) – kx), то прямая y = kx + l является
х ® + ¥
асимптотой графика функции f (x). В самом деле, из l = lim (f (x) – kx) имеем
х ® + ¥
lim [f (x) - (kx + l)] = 0,
х ® + ¥
то есть прямая y = kx + l действительно удовлетворяет определению асимптоты, иначе говоря, выполняется условие f (x) = kx + l + 0. Таким образом, формулы lim = k. и l = lim (f (x) – kx)
х ® + ¥ х ® + ¥
сводят задачу отыскания асимптот y = kx + l к вычислению пределов определённого вида. Более того, мы показали, что если существует
представление функции f в виде f (x) = kx + l + 0, то k и l выражаются по формулам lim = k. и l = lim (f (x) – kx)
х ® + ¥ х ® + ¥
Следовательно, если существует представление y = kx + l, то оно единственно.
Найдём по этому правилу асимптоту графика функции f (x) = ,
найденную нами выше другим способом:
7
то есть мы, как и следовало ожидать, получили тоже уравнение асимптоты
y = x – 4, как при х ® + ¥, так и при х ® - ¥.
В виде y = kx + l может быть записано уравнение любой прямой, непараллельной оси Oy. Естественно распространить определение асимптоты и на прямые, параллельные оси Oy.
8
3. Виды
3.1 Горизонтальная асимптота
Пусть $ lim f (x) = b. Тогда говорят, что у функции f (x) имеется горизонтальная асимптота y = b. График функции чаще всего имеет такой вид (при x ® +¥) (рис.2)
хотя в принципе, может иметь и такой вид (рис.3)
(рис.3)
9
3.2 Вертикальная асимптота
(рис.4)
Пусть при x ® a ± 0 lim f (x) = ± ¥. Тогда говорят, что прямая x = a является
х ® ¥
вертикальной асимптотой f (x). График функции f (x) при приближении x к а ведёт примерно так (рис.4), хотя, конечно, могут быть разные варианты, связанные с тем, куда уходит f (x) в + ¥ или - ¥.
Чаще всего вертикальная асимптота появляется тогда, когда f (x) имеет вид
.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах