Интегральное исчисление

Заработок на криптовалютах по сигналам. Больше 100% годовых!

Заработок на криптовалютах по сигналам

Трейдинг криптовалют на полном автомате по криптосигналам. Сигналы из первых рук от мощного торгового робота и команды из реальных профессиональных трейдеров с опытом трейдинга более 7 лет. Удобная система мгновенных уведомлений о новых сигналах в Телеграмм. Сопровождение сделок и индивидуальная помощь каждому. Сигналы просты для понимания как для начинающих, так и для опытных трейдеров. Акция. Посетителям нашего сайта первый месяц абсолютно бесплатно.

Обращайтесть в телеграм LegionCryptoSupport

Задание. Найти неопределенные интегралы. Результат проверить дифференцированием.

а)

Используемый прием интегрирования называется подведением под знак дифференциала. Проверим результат дифференцированием.

б)

В этом интеграле также используе

тся подведение под знак дифференциала

Проверим результат дифференцированием.

в)

Для решения этого интеграла воспользуемся формулой интегрирования "по частям". Приведем формулу интегрирования по частям:

В этом интеграле распишем составляющие следующим образом:

Продифференцируем u и проинтегрируем dv чтобы мы могли применить формулу интегрирования по частям:

Подинтегральное выражение есть неправильная рациональная дробь. Необходимо привести ее к сумме правильных рациональных дробей, выполнив деление углом числитель на знаменатель.

Вернемся к исходному интегралу:

Проверим результат дифференцированием:

г)

интеграл дифференцирование уравнение парабола

Подинтегральное выражение является неправильной рациональной дробью. Необходимо преобразовать ее в сумму правильных рациональных дробей, выполнив деление углом числитель на знаменатель:

Подинтегральное выражение представляет собой правильную рациональную дробь. Чтобы проинтегрировать её необходимо её представить в виде суммы простейших дробей. Найдем корни знаменателя

по теореме Виета

Разложим правильную рациональную дробь в сумму простейших методом неопределенных коэффициентов:

Приравнивая коэффициенты при одинаковых степенях х, составим систему линейных алгебраических уравнений для определения неизвестных коэффициентов А и В:

Решая СЛАУ находим значения коэффициентов:

Возвратимся к исходному интегралу:

Результат проверим дифференцированием:

Задание. Вычислить по формуле Ньютона-Лейбница определенный интеграл.

Перейдем к замене переменных в определенном интеграле:

Задание. Вычислить площадь фигуры, ограниченной параболой и прямой . Сделать чертеж.

Решение. Площадь области S, ограниченной снизу функцией g(x), сверху- функцией f(x), слева - вертикальной прямой , справа - вертикальной прямой равна равна определенному интегралу:

Так как мы пока не знаем, какая же из функций является большей на отрезке , построим чертеж. Точки , являются абсциссами точек пересечения графиков этих двух функций.

Как видно из построения парабола лежит выше прямой на отрезке, поэтому:

Абсциссы точек пересечения суть соответственно -6 и -1. Эти значения мы также можем получить решив в системе уравнения двух кривых

по теореме Виета имеем: , . Теперь осталось только применить формулу вычисления площади криволинейной области:

-6

-1

Страница:  1  2 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2022 - www.refsru.com - рефераты, курсовые и дипломные работы