Предел и непрерывность функций нескольких переменных

Заработок на криптовалютах по сигналам. Больше 100% годовых!

Заработок на криптовалютах по сигналам

Трейдинг криптовалют на полном автомате по криптосигналам. Сигналы из первых рук от мощного торгового робота и команды из реальных профессиональных трейдеров с опытом трейдинга более 7 лет. Удобная система мгновенных уведомлений о новых сигналах в Телеграмм. Сопровождение сделок и индивидуальная помощь каждому. Сигналы просты для понимания как для начинающих, так и для опытных трейдеров. Акция. Посетителям нашего сайта первый месяц абсолютно бесплатно.

Обращайтесть в телеграм LegionCryptoSupport

Введение

Понятие функции одной переменной не охватывает все зависимости, существующие в природе. Даже в самых простых задачах встречаются величины, значения которых определяются совокупностью значений нескольких величин.

Для изучения подобных зависимостей вводится понятие функции нескольких переменных.

Понятие функции нескольких переменных

Определение. Величина u

называется функцией нескольких независимых переменных (x, y, z, …,t), если каждой совокупности значений этих переменных ставится в соответствие определенное значение величины u.

Если переменная является функцией от двух переменных х и у, то функциональную зависимость обозначают

z = f (x, y).

Символ f определяет здесь совокупность действий или правило для вычисления значения z по данной паре значений х и у.

Так, для функции z = x2 + 3xy

при х = 1 и у = 1 имеем z = 4,

при х = 2 и у = 3 имеем z = 22,

при х = 4 и у = 0 имеем z = 16 и т.д.

Аналогично называется величина u функцией от трех переменных x, y, z, если дано правило, как по данной тройке значений x, y и z вычислить соответствующее значение u:

u = F (x, y, z).

Здесь символ F определяет совокупность действий или правило для вычисления значения u, соответствующего данным значениям x, y и z.

Так, для функции u = xy + 2xz – 3yz

при х = 1, у = 1 и z = 1 имеем u = 0,

при х = 1, у = -2 и z = 3 имеем u = 22,

при х = 2, у = -1 и z = -2 имеем u = -16 и т.д.

Таким образом, если в силу некоторого закона каждой совокупности п чисел (x, y, z, …,t) из некоторого множества Е ставится в соответствие определенное значение переменной u, то и u называется функцией от п переменных x, y, z, …,t, определенной на множестве Е, и обозначается

u = f (x, y, z, …,t).

Переменные x, y, z, …,t называются аргументами функции, множество Е – областью определения функции.

Частным значением функции называется значение функции в некоторой точке М0 (x0, y0, z0, …,t0) и обозначается f (М0) = f (x0, y0, z0, …,t0).

Областью определения функции называется множество всех значений аргументов, которым соответствуют какие-либо действительные значения функции.

Функция двух переменных z = f (x, y) в пространстве представляется некоторой поверхностью. То есть, когда точка с координатами х, у пробегает всю область определения функции, расположенную в плоскости хОу, соответствующая пространственная точка, вообще говоря, описывает поверхность.

Функцию трех переменных u = F (x, y, z) рассматривают как функцию точки некоторого множества точек трехмерного пространства. Аналогично, функцию п переменных u = f (x, y, z, …,t) рассматривают как функцию точки некоторого п-мерного пространства.

Предел функции нескольких переменных

Для того чтобы дать понятие предела функции нескольких переменных, ограничимся случаем двух переменных х и у. По определению функция f (x, y) имеет предел в точке (х0, у0), равный числу А, обозначаемый так:

(1)

(пишут еще f (x, y)→А при (x, y)→ (х0, у0)), если она определена в некоторой окрестности точки (х0, у0), за исключением, быть может, самой этой точки и если существует предел

(2)

какова бы ни была стремящаяся к (х0, у0) последовательность точек (xk, yk).

Так же, как в случае функции одной переменной, можно ввести другое эквивалентное определение предела функции двух переменных: функция f имеет в точке (х0, у0) предел, равный А, если она определена в некоторой окрестности точки (х0, у0) за исключением, быть может, самой этой точки, и для любого ε > 0 найдется такое δ > 0, что

| f (x, y) – A | < ε (3)

для всех (x, y), удовлетворяющих неравенствам

0 < < δ. (4)

Это определение, в свою очередь, эквивалентно следующему: для любого ε > 0 найдется δ-окрестность точки (х0, у0) такая, что для всех (x, y) из этой окрестности, отличных от (х0, у0), выполняется неравенство (3).

Так как координаты произвольной точки (x, y) окрестности точки (х0, у0) можно записать в виде х = х0 + Δх, у = у0 + Δу, то равенство (1) эквивалентно следующему равенству:

Рассмотрим некоторую функции, заданную в окрестности точки (х0, у0), кроме, быть может, самой этой точки.

Пусть ω = (ωх, ωу) – произвольный вектор длины единица (|ω|2 = ωх2 + ωу2 = 1) и t > 0 – скаляр. Точки вида

(х0 + tωх, y0 + tωу) (0 < t)

образуют луч, выходящий из (х0, у0) в направлении вектора ω. Для каждого ω можно рассматривать функцию

f (х0 + tωх, y0 + tωу) (0 < t < δ)

от скалярной переменной t, где δ – достаточно малое число.

Предел этой функции (одной переменной t)

f (х0 + tωх, y0 + tωу),

если он существует, естественно называть пределом f в точке (х0, у0) по направлению ω.

Пример 1. Функции

определены на плоскости (x, y) за исключением точки х0 = 0, у0 = 0. Имеем (учесть, что и ):

Отсюда

(для ε > 0 полагаем δ = ε/2 и тогда | f (x, y)| < ε, если < δ).

Далее, считая, что k – постоянная, имеем для y = kx равенство

из которого видно, что предел φ в точке (0, 0) по разным направлениям вообще различен (единичный вектор луча y = kx, х > 0, имеет вид

).

Пример 2. Рассмотрим в R2 функцию

(х4 + у2 ≠ 0).

Данная функция в точке (0, 0) на любой прямой y = kx, проходящей через начало координат, имеет предел, равный нулю:

при х → 0.

Однако эта функция не имеет предела в точки (0, 0), ибо при у = х2

и

Будем писать , если функция f определена в некоторой окрестности точки (х0, у0), за исключением, быть может, самой точки (х0, у0) и для всякого N > 0 найдется δ > 0 такое, что

| f (x, y)| > N,

коль скоро 0 < < δ.

Страница:  1  2  3  4 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2022 - www.refsru.com - рефераты, курсовые и дипломные работы