Энергия Солнца
Но большую часть наблюдений по-прежнему проводят с Земли. Чтобы избежать перерывов, связанных с ночами и плохой погодой, Солнце наблюдают с разных континентов. Ведь когда в Восточном полушарии ночь, в Западном - день, и наоборот. Современные методы позволяют представить такие наблюдения как один непрерывный ряд. Немаловажное условие для этого - чтобы телескопы и приборы были одинаковыми. Подоб
ные наблюдения проводят в рамках крупных международных проектов.
Что же удалось узнать о Солнце, изучая эти необычные, беззвучные звуковые волны? Сначало представления об их природе не сильно отличались от того, что было известно о колебаниях земной коры. Ученые представляли себе, как процессы на Солнце возбуждают эти волны, и они бегут по поверхности нашего светила, словно морские волны по водной глади. Но в дальнейшем обнаружился очень интересный факт: оказалось, что некоторые волны в разных частях солнечного диска связаны между собой (физики говорят: имеют одну фазу). Это можно представить себе так, будто вся поверхность покрыта равномерной сеткой волн, но в некоторых местах она невидна, а в других отчетливо проявляется. Получается, что разные области имеют тем не менее согласованную картину осциляций. Исследователи пришли к выводу, что солнечные колебания носят глобальный характер: волны пробегают очень большие расстояния и в разных местах солнечного диска видны проявления одной и той же волны. Таким образом, можно сказать, что Солнце "звучит, как колокол", т.е. как одно целое.
Как в случае с Землей, колебания поверхности Солнца - лишь отзвук тех волн, которые распространяются в его глубинах. Одни волны доходят до центра Солнца, другие затухают на полпути. Это и помогает исследовать свойства разных частей солнечных недр. Изучая волны с разной глубиной проникновения, удалось даже построить зависимость скорости звука от глубины! А поскольку из теории известно, что на нижней границе зоны конвекции должно быть резкое изменение скорости звука, удалось определить, где начинается солнечная конвективная зона. Это на сегодня одно из важнейших достижений гелиосейсмологии.
Есть у гелиосейсмологии и свои проблемы. Например, пока не удалось выяснить причину колебаний солнечной поверхности. Считается, что наиболее вероятный источник колебаний - грануляция: выходящие на поверхность потоки раскаленной плазмы, подобно мощным фонтанам, вызывают разбегающиеся во все стороны волны. Однако на деле все не так просто, и теоретики пока не смогли удовлетворительно описать эти процессы. В частности, неясно, почему волны столь устойчивы, что могут обежать все Солнце, не затухая?
С помощью методов гелиосейсмологии удалось установить, что внутренняя часть Солнца (ядро) вращается заметно быстрее, чем наружные слои. Неравномерное вращение Солнца оказывает на его осцилляции такое же воздействие, как трещина на колокол. В результате "звук" становится не очень чистым - изменяются существующие периоды колебаний и появляются новые. Это дает возможность исследовать вращение внутренних слоев, которое другими методами пока изучать нельзя. Считается, именно благодаря неравномерному вращению Солнце имеет магнитное поле.
Вот такая неожиданная и бурно развивающаяся сейчас область науки возникла из, казалось бы, ничем не примечательных измерений движений солнечной поверхности.
Солнечные инструменты
Основным инструментом астронома, что бы он ни изучал на небе, является телескоп. И хотя принцип действия всех телескопов общий, для каждой области астрономии разработаны свои модификации этого прибора.
Яркость Солнца велика, следовательно, светосила оптической системы солнечного телескопа может быть небольшой. Гораздо интереснее получить как можно больший масштаб изображения. Поэтому у солнечных телескопов очень большие фокусные расстояния. Самый крупный из них имеет фокусное расстояние 90 м и дает изображение Солнца диаметром около 80 см. Вращать подобную конструкцию было бы нелегко. К счастью, это и не нужно. Солнце движется по небосводу лишь в ограниченной его области, внутри полосы шириной около 47°. Поэтому солнечному телескопу не нужна монтировка для наведения в любую точку неба. Его устанавливают неподвижно, а солнечные лучи направляются подвижной системой зеркал - целостатом.
Бывают горизонтальные и вертикальные солнечные телескопы. Горизонтальный телескоп построить легче, так как все его детали находятся на горизонтальной оси. С ним и работать легче. Но у него есть один существенный недостаток. Солнце дает много тепла, и воздух внутри телескопа сильно нагревается. Нагретый воздух движется вверх, более холодный - вниз. Эти встречные потоки делают изображение дрожащим и нерезким. Поэтому в последнее время строят в основном вертикальные солнечные телескопы. В них потоки воздуха движутся почти параллельно лучам света и меньше портят изображение.
Лучшие фотографии Солнца, полученные на крупнейших инструментах, позволяют увидеть детали размером около 200 км. Обычные солнечные телескопы предназначены в основном для наблюдения фотосферы. Чтобы наблюдать самые внешние и сильно разреженные, а потому слабо светящиеся слои солнечной атмосферы - солнечную корону, пользуются коронографом. Изобрел его французский астроном Бернард Лио в 1930 г.
В обычных условиях солнечную корону увидеть нельзя, так как свет от нее в 10 тыс. раз слабее света дневного неба вблизи Солнца. Можно воспользоваться моментами полных солнечных затмений, когда диск Солнца закрыт Луной. Но затмения бывают редко и порой в труднодоступных районах земного шара. Да и погода не всегда благоприятна. А продолжительность полной фазы затмения не превышает 7 мин. Коронограф же позволяет наблюдать корону вне затмения.
Чтобы удалить свет от солнечного диска, в фокусе объектива коронографа установлена искусственная "луна". Кроме того, необходимо убрать рассеянный свет в телескопе. Самое важное - это хорошо отполированный объектив без дефектов внутри стекла. Коронографы обычно устанавливают высоко в горах, где воздух прозрачнее и небо темнее. Но и там солнечная корона все же слабее, чем ореол неба вокруг Солнца. Поэтому ее можно наблюдать только в узком диапазоне спектра, в спектральных линиях излучения короны. Для этого используют специальный фильтр или спектрограф.
Спектрографф - самый важный вспомогательный прибор для астрофизических исследований. Многие солнечные телескопы служат лишь для того, чтобы направлять пучек солнечного света в спектрограф. Основная характеристика спектрографа - его спектральное разрешение. Чем выше разрешение, тем более близкие спектральные линии можно увидеть раздельно. Разрешение зависит от нескольких параметров. Один из них - порядок спектра. Дифракционная решетка дает много спектров, видимых под разными углами. Говорят, что она имеет много порядков спектра.