Алгоритм муравья
5. Движение муравья
Движение муравья основывается на одном и очень простом вероятностном уравнении. Если муравей еще не закончил путь, то есть не посетил все узлы сети, для определения следующей грани пути используется уравнение :
(2.1)
Здесь - интенсивность фермента на грани между узлами r и u, -Функция, которая представляет измерение обратного расстояния для грани, a -вес фермента, а b- коэффициент эвристики. Параметры a и b определяют относительную значимость двух параметров, а также их влияние на уравнение. Вспомните, что муравей путешествует только по узлам, которые еще не были посещены (как указано списком табу). Поэтому вероятность рассчитывается только для граней, которые ведут к еще не посещенным узлам. Переменная k представляет грани, которые еще не были посещены.
6. Путешествие муравья
Пройденный муравьем путь отображается, когда муравей посетит все узлы диаграммы. Обратите внимание, что циклы запрещены, поскольку в алгоритм включен список табу. После завершения длина пути может быть подсчитана - она равна сумме всех граней, по которым путешествовал муравей. Уравнение показывает количество фермента, который был оставлен на каждой грани пути для муравья k. Переменная Q, является константой.
(2.2)
Результат уравнения является средством измерения пути, - короткий путь характеризуется высокой концентрацией фермента, а более длинный путь - более низкой. Затем полученный результат используется в уравнении 2.3, чтобы увеличить количество фермента вдоль каждой грани пройденного муравьем пути.
(2.3)
Обратите внимание, что данное уравнение применяется ко всему пути, при этом каждая грань помечается ферментом пропорционально длине пути. Поэтому следует дождаться, пока муравей закончит путешествие и только потом обновить уровни фермента, в противном случае истинная длина пути останется неизвестной. Константа р - значение между 0 и 1.
7. Испарение фермента
В начале пути у каждой грани есть шанс быть выбранной. Чтобы постепенно удалить грани, которые входят в худшие пути в сети, ко всем граням применяется процедура испарения фермента. Используя константу р из уравнения 2.3, мы получаем уравнение 2.4.
(2.4)
Поэтому для испарения фермента используется обратный коэффициент обновления пути.
8. Повторный запуск
После того как путь муравья завершен, грани обновлены в соответствии с длиной пути и произошло испарение фермента на всех гранях, алгоритм запускается повторно. Список табу очищается, и длина пути обнуляется. Муравьям разрешается перемещаться по сети, основывая выбор грани на уравнении 2.1. Этот процесс может выполняться для постоянного количества путей или до момента, когда на протяжении нескольких запусков не было отмечено повторных изменений. Затем определяется лучший путь, который и является решением.
9 Блок-схема алгоритма
10. Демонстрационный пример
Разберем функционирование рассмотренного выше алгоритма на простом примере, чтобы увидеть, как работают уравнения. Возьмем простой сценарий с двумя муравьями из примера который рассмотрели в п. 1. На рис. 5 показан этот пример с двумя ребрами между двумя узлами (V0 и V1). Каждое ребро инициализируется и имеет одинаковые шансы на то, чтобы быть выбранным.
Рис. 5. Рис. 6.
Два муравья находятся в узле V0 помечаются как A0 и A1. Так как вероятность выбора любого пути одинакова, в этом цикле мы проигнорируем уравнение выбора пути. Данные для задачи:
число пройденных шагов: для A0 − 20, для A1 − 10
уровень феромона (Q/пройденное расстояние): для A0 − 0.5, A1 − 1.0
ρ = 0.5
α = 0.3
β = 1.0
На рис. 6 каждый муравей выбирает свой путь (муравей A0 идет по верхнему пути, а муравей A1 - по нижнему). Муравей A0 сделал 20 шагов, а муравей A1, - только 10. По уравнению 2 мы рассчитываем количество феромонов, которое должно быть "нанесено".
Примечание: Работу алгоритма можно изменить, переопределив его параметры (например, α, β или p), например, придав больший вес феромонам или расстоянию между узлами.
Далее по уравнению 3 рассчитывается количество феромона, которое будет применено. Для муравья A0 результат составляет: 0,1 + (0,5 * 0,6) = 0,4. Для муравья A1 результат составляет: 0,1 + (1,0 * 0,6) = 0,7. Далее с помощью уравнения 4 определяется, какая часть феромонов испарится и, соответственно, сколько останется. Результаты (для каждого пути соответственно) составляют:
0,4 * (1,0 - 0,6) = 0,16
0,7 * (0,5 - 0,6) = 0,28
Эти значения представляют новое количество феромонов для каждого пути (верхнего и нижнего, соответственно). Теперь переместим муравьев обратно в узел V0 воспользуемся вероятностным уравнением выбора пути 1, чтобы определить, какой путь должны выбрать муравьи. Вероятность того, что муравей выберет верхний путь (представленный количеством феромона 0,16), составляет:
Вероятность того, что муравей выберет нижний путь (представленный количеством феромона 0,28) составляет:
При сопоставлении двух вероятностей оба муравья выберут нижний путь, который является наиболее оптимальным.
11. Характерные особенности
Для алгоритма муравьиной колонии необходимо указать:
· закон выделения феромона,
· закон испарения феромона,
· количество агентов,
· места размещения.
Все эти характеристики выбираются с учетом особенности задачи на основе экспериментальных исследований (эвристики).
Алгоритм:
· реализует поиск приближенных решений,
· имеет полиномиальную сложность,
· является одним из видов вероятностных алгоритмов (законы выделения испарения – вероятностные законы).
12. Области применения
Алгоритм муравья может применяться для решения многих задач, таких как распределение ресурсов и работы.
При решении задачи распределения ресурсов необходимо задать группу ресурсов n для ряда адресатов m и при этом минимизировать расходы на перераспределение (то есть функция должна найти наилучший способ распределения ресурсов). Обнаружено, что алгоритм муравья дает решения такого же качества, как и другие, более стандартные способы.
Другие рефераты на тему «Математика»:
- Экспоненциальный фильтр
- Локальные формации с метаабелевыми группами
- Нестандартные методы решения задач по математике
- Построение математической модели оптимального управления, обеспечивающего мягкую посадку при минимальном расходе топлива
- Закономерность распределения простых чисел в ряду натуральных чисел
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах