Вероятностные процессы и математическая статистика в автоматизированных системах

2.5 Расчет коэффициентов регрессии

Поскольку план ортогонален, то коэффициенты регрессии будут определяться независимо друг от друга по формулам:

Значения при ядре плана :

Матрица дисперсий (ковариаций) коэффициентов регрессии рассчитывается по формуле (10).

2.6 Определение значимости коэффициентов

Значимость коэффициентов регрессии проверяют по критерию Стьюдента:

(17)

Дисперсия коэффициентов определяется по формуле

2.7 Проверка адекватности модели

Адекватность модели проверяется с помощью критерия Фишера:

(17)

, (18)

где Sад2 – дисперсия адекватности, рассчитываемая по формуле (18);

Sy2 – дисперсия опыта;

a=0.05;

fад=N-l, число свободы дисперсии адекватности;

fy=N(m-1), число свободы дисперсии опыта;

l – количество значимых коэффициентов.

Если неравенство (17) выполняется, значит модель адекватна.

3. Выбор и описание метода условной оптимизации

3.1 Выбор метода условной оптимизации

При решении поставленной задачи оптимизации был использован метод Фиако-МакКормика, который относится к непрямым методам решения задач нелинейного программирования. Непрямые методы преобразуют задачи с ограничениями в последовательность задач безусловной оптимизации путем введения в целевую функцию штрафных функций.

3.2 Описание метода условной оптимизации (Фиако-МакКормика)

Алгоритм метода Фиако-Маккормика

Этап 1. Задание ,, .

Этап 2. Нахождение методом прямого поиска минимума вспомогательной функции , т.е. .

Этап 3. Проверка условий окончания поиска . Если условие выполняется по переход на этап 6, иначе переход на этап 4.

Этап 4. Уменьшение значения , , .

Этап 5. Увеличение . Переход на этап 2.

Этап 6. Оптимальное решение , .

4. Описание программы

4.1 Общие сведения

Обозначение программы - vpRgr.exe.

Наименование программы - “Расчетно – графическая работа № 1 по дисциплине “ВПиМСвАС”.

Программное обеспечение, необходимое для функционирования программы – Windows 95/98/NT/2000/ME.

Для написания программы была использована интегрированная среда разработки приложений (IDE-Integrated Development Environment) – Delphi 6.0.

4.2 Функциональное назначение

1 Назначение программы: определение оптимального состава алюминиевых деформируемых сплавов из условия получения максимального предела прочности при испытаниях на растяжения

2 Классы решаемых задач: анализ и статистическая обработка полнофакторного эксперимента с ортогональными планами второго порядка, в которую входят нахождение коэффициентов регрессии, оценка из значимости, проверка адекватности и воспроизводимости модели; поиск сочетаний факторов в кодовых и натуральных переменных; построения графиков отклика от изменения каждого параметра; построения кривых равного выхода при фиксировании одного из параметров.

3 Сведения о функциональных ограничениях на ее применение: данная программа корректно функционирует при количестве параметров равном 3. При небольшой модификации программы (замены названий факторов на новые) можно решать общую задачу анализа и статистической обработки полнофакторного эксперимента с ортогональными планами второго порядка.

4.3 Описание логической структуры программы

При программировании с использованием средств визуального программирования (Delphi, Visual Basic и др.), приложение становится событийно – управляемым, поэтому невозможно построить алгоритм программы, как это имело место при традиционном программировании на Pascal, C++. В связи с этим наиболее полное представление о программе дает ее укрупненная структурная схема с описанием функций составных частей и связи между ними.

Для того, чтобы разделить фазы “конструирования пользовательского интерфейса” и “непосредственного программирования математической модели”, была использована блочно – модульная структура. При этом каждый структурный элемент выносился в отдельный модуль, поддерживающий интерфейс с пользователем и между собой.

Рисунок 1.-логическая связь процедур модуля

Описание структурных элементов программы

type mas=array[1 3] of real;

var x:array[0 9,1 15] of real; //переменные

x2:array[1 3,1 15] of real;//квадраты переменных

x0,ix, //нулевые уровни и интервалы варьирования

xc, //значения координат центра

la, //канонические козффициенты

m,l,n,ml,nl, //направляющие косинусы углов поворота осей и их частные

xp1,xp2,xp3,xh,

xlocmax,xlocmin:mas; //координаты локальных максимума и минимума

y,ys:array[1 2,1 20] of real; //значения функции отклика

x12,x23,x13, //попарные произведения переменных

yc,ycs, //усредненная функция отклика

s2u:array[1 15] of real; //дисперсии эксперементив

b, //коэффициенты модели

s2b, //дисперсии коэффициентов

db:array[0 9] of real; //пределы значимости коэффициентов

kk: d,xc2,

S2UMax, //максимальное значение дисперсии эксперемента

s2y, //дисперсия опыта

ycen, //функция отклика в центре

ylocmax,ylocmin:real;

4.4 Используемые технические средства

Для оптимальной работы программы необходима следующая конфигурация компьютера:

1) процессор Intel Pentium III|| 500;

2) ОЗУ 64 Мб;

3) SVGA монитор (разрешение 800х600);

4) свободное место на жестком диске не менее 2 Mb;

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы