Дифференцирование в линейных нормированных пространствах

Заработок на криптовалютах по сигналам. Больше 100% годовых!

Заработок на криптовалютах по сигналам

Трейдинг криптовалют на полном автомате по криптосигналам. Сигналы из первых рук от мощного торгового робота и команды из реальных профессиональных трейдеров с опытом трейдинга более 7 лет. Удобная система мгновенных уведомлений о новых сигналах в Телеграмм. Сопровождение сделок и индивидуальная помощь каждому. Сигналы просты для понимания как для начинающих, так и для опытных трейдеров. Акция. Посетителям нашего сайта первый месяц абсолютно бесплатно.

Обращайтесть в телеграм LegionCryptoSupport

Оглавление

Введение

Основные понятия

Сильный дифференциал (дифференциал Фреше)

Слабый дифференциал (дифференциал Гато)

Формула конечных приращений

Связь между слабой и сильной дифференцируемостью

Дифференцируемые функционалы

Абстрактные функции

Интеграл

Производные высших порядков

Дифференциалы высших порядков

Формула Тейлора

Заключение1 >Список литературы:

Введение

Функциональный анализ — раздел математики, в котором изучаются бесконечномерные пространства и их отображения.

Понятие нормированного пространства – одно из самых основных понятий функционального анализа. Теория нормированных пространств была построена, главным образом, С. Банахом в 20-х годах 20 века. Функциональный анализ за последние два десятилетия настолько разросся, настолько широко и глубоко проник почти во все области математики, что сейчас даже трудно определить самый предмет этой дисциплины. Однако в функциональном анализе есть несколько больших «традиционных» направлений, которые и поныне в значительной степени определяют его лицо. К их числу принадлежит дифференцирование линейных нормированных пространств.

Основные понятия

Определение 1. Непустое множество называется линейным пространством, если оно удовлетворяет следующим условиям:

Й. Для любых двух элементов однозначно определен элемент , называемый их суммой, причем

1. (коммутативность)

2. (ассоциативность)

В существует такой элемент 0, что для всех

4. Для каждого существует такой элемент , что .

II. Для любого числа и любого элемента определен элемент , причем

5.

6.

III. Операции сложения и умножения связаны между собой дистрибутивными законами:

7.

8.

Определение 2. Линейное пространство называется нормированным, если на нем задана неотрицательная функция , называемая нормой, удовлетворяющая условиям:

для любого и любого числа ;

для любых (неравенство треугольника).

Определение 3. Оператором называется отображение

,

где - это линейные пространства.

Определение 4. Оператор называется линейным, если для любых элементов и любых чисел R выполняется равенство:

Определение 5. Пусть - линейные нормированные пространства,

– линейный оператор,

Линейный оператор непрерывен в точке , если из того, что

следует, что .

Определение 6. Линейный оператор непрерывен, если он непрерывен в каждой точке .

Определение 7. Линейный оператор называется ограниченным, если

Утверждение. Для линейного нормированного пространства непрерывность линейного оператора равносильна его ограниченности.

Определение8. Наименьшая из констант M таких, что , называется нормой оператора А и обозначается .

В частности, выполняется

Справедливо следующее утверждение: для любого ограниченного линейного оператора

Сильный дифференциал (дифференциал Фреше)

Пусть X и У — два нормированных пространства и F — отображение, действующее из X в Y и определенное на некотором открытом подмножестве О пространства X. Мы назовем это отображение дифференцируемым в данной точке, если существует такой ограниченный линейный оператор Lxж (X, Y), что для любого е> 0 можно найти д > 0, при котором из неравенства ||h||< д следует неравенство

Страница:  1  2  3  4  5 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2022 - www.refsru.com - рефераты, курсовые и дипломные работы