Методика регрессионного анализа

Заработок на криптовалютах по сигналам. Больше 100% годовых!

Заработок на криптовалютах по сигналам

Трейдинг криптовалют на полном автомате по криптосигналам. Сигналы из первых рук от мощного торгового робота и команды из реальных профессиональных трейдеров с опытом трейдинга более 7 лет. Удобная система мгновенных уведомлений о новых сигналах в Телеграмм. Сопровождение сделок и индивидуальная помощь каждому. Сигналы просты для понимания как для начинающих, так и для опытных трейдеров. Акция. Посетителям нашего сайта первый месяц абсолютно бесплатно.

Обращайтесть в телеграм LegionCryptoSupport

Проверка модели на адекватность производиться с использованием F-критерия Фишера:

Где – числа степеней свободы для и :

mg width=172 height=20 src="images/referats/11770/image042.png">

Просчитаем экспериментальное значение:

По таблицам значения критерия Фишера (приложения 3) для q = 0,05 находим:

Так как выполняется условие значит модель адекватна.

Так как у нас , то нет необходимости определять значимость обратного отношения дисперсий.

Проверка на информативность [1, с. 97-99]

Коэффициент множественной корреляции R определяется по формуле:

Посчитанное значение R = 0,997 которое очень близко к единице.

Гипотезу о значимости множественного коэффициента корреляции проверяют по F-критерию:

Где – суммы квадратов отклонений – связанная с коэффициентом модели и остаточная; – числа степеней свободы для и .

В нашем случае:

По таблицам значения критерия Фишера для q = 0,05 находим:

Поскольку , то гипотеза о статистической незначимости R не принимается – это значит, что коэффициент множественной корреляции R является статистически значимым.

Проверка на устойчивость коэффициентов математической модели к случайным составляющим в исходной информации [1, с. 99-101]

Коэффициенты математической модели должны быть устойчивы к малым случайным изменениям в исходных данных, полученных в процессе эксперимента. Для количественно показателя устойчивости коэффициентов математической модели будем использовать меру обусловленности матрицы по Нейману-Голдстейну.

Для определения меры обусловленности по Нейману-Голдстейну P необходимо найти собственные числа для матрицы Фишера , решая уравнение:

Где – собственные числа для информационной матрицы Фишера

Поскольку коэффициенты b4 и b7 статистически незначимы, тога соответствующие столбцы матрицы X отбрасываются и размер матрицы становится , размер обратной матрицы - , а размер матрицы Фишера - :

Так как все эффекты в матрице Фишера ортогональны друг другу и нормированы, то:

Находят – максимальное и минимальное собственное число для информационной матрицы Фишера :

Мера обусловленности по Нейману-Голдстейну:

Другая мера обусловленности матрицы обозначается латинским сокращением cond:

- обозначение нормы матрицы. При этом предполагается, что матрица невырождена.

Известны несколько видов норм для матрицы А. Каждой из векторных норм соответствует своя подчиненная норма матрицы. Будем использовать следующую форму:

что означает выбор по всем столбцам j максимальной суммы абсолютных значений элементов по строкам i (m – число строк матрицы А).

Так как все эффекты в расширенной матрице X ортогональны друг другу, то:

Для матрицы каждая по столбцам . Для матрицы каждая по столбцам .

Число обусловленности в этом случае будет:

Что подтверждает результат, полученный предыдущим методом.

Проверка фактической эффективности извлечения полезной информации из исходных данных [1, с. 101-102]

Косвенным показателем эффективности может быть число обусловленности cond для полученной модели. Так как значит эффективность можно считать хорошей.

Проверка правильности описания полученной математической модели по всей области моделирования [1, с. 102]

Полученную математическую модель желательно проверить по контрольной выборке. С использованием ПС ПРИАМ можно построить трехмерное изображение поверхности отклика, и проанализировать полученную поверхность, сравнивая минимальные и максимальные расчетные значения с допустимыми физическими значениями отклика. Возможен также поиск минимума и максимума по модели с использованием ЛПτ равномерно распределенных последовательностей и сравнения с физически возможными значениями отклика.

Страница:  1  2  3  4 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2022 - www.refsru.com - рефераты, курсовые и дипломные работы