Методы отсечения

Заработок на криптовалютах по сигналам. Больше 100% годовых!

Заработок на криптовалютах по сигналам

Трейдинг криптовалют на полном автомате по криптосигналам. Сигналы из первых рук от мощного торгового робота и команды из реальных профессиональных трейдеров с опытом трейдинга более 7 лет. Удобная система мгновенных уведомлений о новых сигналах в Телеграмм. Сопровождение сделок и индивидуальная помощь каждому. Сигналы просты для понимания как для начинающих, так и для опытных трейдеров. Акция. Посетителям нашего сайта первый месяц абсолютно бесплатно.

Обращайтесть в телеграм LegionCryptoSupport

Содержание

Введение

1. Постановка линейной целочисленной задачи

2. Теоретические основы методов отсечения

3. Первый алгоритм Гомори

4. Второй алгоритм Гомори

5. Алгоритм Дальтона и Ллевелина

6. Алгоритм Данцига

7. Некоторые выводы

Заключение

Список литературы

Приложение

Введение

Среди практиче

ски важных задач отыскания условного экстремума линейной функции важное место занимают задачи с требованием целочисленности всех (части) переменных. Они получили название задач целочисленного (частично целочисленного) программирования.

Исторически первой задачей целочисленного типа является опубликованная венгерским математиком Е. Эгервари в 1932 г. задача о назначении персонала.

Существуют различные методы решения таких задач, и заметное место среди них занимают методы отсечения. Рассмотрим в этой работе некоторые из методов отсечения, предварительно более подробно разобравшись с постановкой линейных целочисленных задач.

1. Постановка линейной целочисленной задачи

Среди совокупности п неделимых предметов, каждый i-и (i=1,2,…, п) из которых обладает по i-й характеристике показателем и полезностью найти такой набор, который позволяет максимизировать эффективность использования ресурсов величины .

Математическая модель этой задачи может быть представлена следующим образом:

в области, определенной условиями

(1)

(2)

- целые, . (3)

найти решение при котором максимизируется (минимизируется) значение целевой функции

(4)

Если , то (1–4) является моделью задачи целочисленного программирования, если - моделью задачи частично целочисленного программирования.

Частным случаем задачи целочисленного программирования является задача с булевыми переменными. Ее математическая модель в общем виде записывается следующим образом:

в области, определенной условиями

(5)

(6)

найти решение , при котором максимизируется (минимизируется) значение функции

(7)

К классу задач целочисленного программирования примыкают задачи, в которых условие целочисленности всех или части переменных заменено требованием дискретности. А именно, для каждой j-и переменной заранее определен набор значений (не обязательно целых), которые она может принимать: где .

Предполагается, что ранжированы, т.е.. Математическая модель общей задачи дискретного программирования может быть представлена следующим образом:

в области, определенной условиями

(8)

(9)

найти решение , при котором максимизируется (минимизируется) линейная функция

(10)

Условие (9) определило название этого класса; задач. Если , то (8–10) называется задачей дискретного программирования; если , то (8–10) называется задачей частично дискретного программирования.

Нетрудно видеть, что условие (2–3) задачи (1–4) и условие (6) задачи (5–7) являются частным случаем условия (9) задачи (8–10). Действительно, (2–3) соответствует тому случаю, когда для . Условие (9) соответствует случаю, когда .

Для задач целочисленного типа определено понятие допустимого и оптимального решения.

Вектор , удовлетворяющий условиям (1–3) (соответственно (8–9)), называется допустимым решением задачи (1–4) (соответственно (8–10)). Допустимое решение, при котором функция (4) (соответственно (10)) достигает наибольшего (наименьшего) значения, называется оптимальным решением.

Определив понятие допустимого и оптимального решения, естественно поставить вопрос об их нахождении. Казалось бы, что естественный путь решения целочисленной задачи состоит в решении соответствующей линейной задачи с последующим округлением компонент ее оптимального плана до ближайших целых чисел. На самом деле такой путь в большинстве случаев не только уводит, от оптимума, но даже приводит иногда к недопустимому решению задачи.

ПРИМЕР. В области, определенной условиями

– целые

найти максимум функции .

Решим задачу геометрически (рис. 1). Область поиска экстремума – многоугольник ODABC, но так как линия уровня целевой функции параллельна стороне АВ многоугольника, экстремум достигается в вершинах и , а также в любой точке отрезка АВ, и равен 7.

(рис. 1)

Однако нас интересуют лишь точки с целочисленными координатами, следовательно, ни А, ни В не являются допустимым решением задачи. Округляя значение координат А, получим Но точка А' не принадлежит области поиска. Можно показать, что целочисленный оптимум достигается в точках N (3; 2) и M (2; 3) и равен 5. Обе точки внутри области поиска.

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2022 - www.refsru.com - рефераты, курсовые и дипломные работы