Многолетние биологические ритмы в жизни животных и человека

Заработок на криптовалютах по сигналам. Больше 100% годовых!

Заработок на криптовалютах по сигналам

Трейдинг криптовалют на полном автомате по криптосигналам. Сигналы из первых рук от мощного торгового робота и команды из реальных профессиональных трейдеров с опытом трейдинга более 7 лет. Удобная система мгновенных уведомлений о новых сигналах в Телеграмм. Сопровождение сделок и индивидуальная помощь каждому. Сигналы просты для понимания как для начинающих, так и для опытных трейдеров. Акция. Посетителям нашего сайта первый месяц абсолютно бесплатно.

Обращайтесть в телеграм LegionCryptoSupport

Ритм выведения имаго у мутанта per0 поддается захватыванию температурными циклами, но нечувствителен к циклам освещения. Однако явление двустабильности, наблюдаемое при температурном захватывании колебателя дикого типа (когда ритм может поддерживать любую из двух возможных фаз, отстоящих друг от друга на 3ч), у этого мутанта отсутствует. Кроме того, вскоре после прекращения температурных циклов

мутант per0 становится аритмичным. Таким образом, мутация per0 полностью уничтожает эндогенный характер колебателя.

Поскольку локус per находится в Х-хромосоме, мутацию per5 можно использовать в качестве маркера для картирования первичного эффекта гена, контролирующего часы, относительно культурных структур мозаичных мух, тела которых состоят из клеток разной половой принадлежности. Эффект этого гена выявляется вблизи головной кутикулы, что согласуется с локализацией часов в структуре мозга. Способность мозга контролировать ритм подвижности взрослых мух была установлена в опытах с трансплантацией мозга: пересадка его от донора per5 в брюшко наследственно аритмичному реципиенту per0 приводила к возникновению ритма подвижности с коротким периодом.

Таким образом, мозг выделяет какой-то гуморальный фактор, синтезируемый в нейросекторных клетках и контролирующий период ритма подвижности. Интересно, что «аритмичные» мутации как у Drosophila melanogaster, так и у D. Pseudoobscura повышают в мозгу процент аномально расположенных клеток, принадлежащих к задней группе нейросекторных элементов. Эти клетки, возможно, участвуют в функции циркадианных систем мух, например в качестве источника гуморального фактора, контролирующего ритм подвижности. Исследования мозаичных мух, нейроны которых различаются гистохимическими метками, поможет выяснить роль групп нейросекторных клеток в контроле циркадианной ритмичности. Генетический локус, в некоторых отношениях сходны с локусом per дрозофилы, был описан у гриба Neurospora. Мутация этого локуса тоже могут укорачивать или удлинять период. Гетерокарионы с ядрами того и другого типа проявляют период промежуточной длины подобного гетерозиготам per5/ per1 дрозофилы. Таким образом, у нейроспоры и дрозофилы имеются локусы, сходные по своим функциям; возможно, что циркадианные колебатели этих организмов близко по своему устройству на молекулярном уровне.

Итак, генетическое исследование циркадианных колебателей пролило новый свет на организацию циркадианной системы у некоторых организмов. Однако до сих пор не удалось установить ни одного конкретного механизма. Следующим шагом в использовании генетических методов для выяснения малекулярных механизмов циркадианных колебателей должна быть биохимическая идентификация продуктов тех генов, мутации которых затрагивают основные свойства колебателя.

Циркодиальные ритмы у беспозвоночных

Клеточные механизмы. Рассматривая ритмическую активность (напримнр, сокращения сердца или локомотацию), мы видели, что существуют два основных механизма генерации ритма: либо имеется клетки – водитель ритма (лейсмейкер), выходные сигналы которой задают ритм другим клеткам, либо действует групп или сеть клеток, ни одна из которых в отдельности не способна генерировать ритм – он возникает благодаря межклеточным связям. Эти две возможности следует учитывать и при анализе циркадиальных ритмов.

Удобным обьектом для изучения механизмов циркадиальных ритмов оказался морской брюхоногий моллюск Aplysia; его впервые использовал с этой целью Ф. Струмвассер из Калифорнийского технологического института в 1965г У аплизий, как и у большенства других животных, наблюдаются суточные изменения подвижности: эти малюски активны днем и неактивны ночью. Поскольку мы не знаем, существует ли у беспозвоночных сон, подобный сну млекопитающих, неактивное состояние у моллюсков лучше всего называть просто «покоем»; поэтому мы будем говорить, что аплазии свойствен суточный цикл покоя – активности. Многие другие животные тоже активны днем, однако некоторые (например, теплокровные ночные хищники) активны в темное время суток.

Если аплазию, которая жила в обычных условиях при суточной смене света и темноты, поместить в условия постоянного освещения или постоянной темноты, цикл покоя – активности у нее будет сохраняться в течение нескольких суток. Из этого видно, что циркадианный ритм может поддерживаться даже без каких либо сигналов от окружающей среды. Такой ритм, сохраняющийся при постоянных условиях, называется свободнотекущим. Период своботнотекущего ритма не равен в точности 24 часам (отсюда и общее название «циркадианный»); поэтому принято говорить, что в естественных условиях собственный ритм организма захватывает 24часовым циклом освещенности.

Описанные опыты показывают, что циркадианный генератор, ответственный за цикл покоя – активности, находится где-то в нервной системе. Этим генератором не может быть крупный нейрон с периодической импульсацией R15: двустороннее удаление абдоминального ганглия, в состоянии которого входит этот нейрон, не влияет на свободнотекуший ритм. В то же время удаление обоих глаз, как в естественных условиях, так и при постоянном освещении приводит к исчезновению циклической двигательной активности. С этим согласуется и тот факт, что свободнотекущий ритм сохраняется в глазах аплазий, находящихся все время в темноте; он проявляется в изменениях уровня спонтанной импульсации, регистрируемой в зрительных нервах. Сходный ритм можно записать и при отведении от изолированного глаза. Из этих опытов следует, что нервный субстрат, ответственный за циркадианные ритмы двигательной активности у аплазий, находится в самом глазу.

Для выявления клеточных механизмов циркадианного ритма применяли разные методы, в том числе воздействие фармакологическими агентами, подавляющими генерацию импульсов и передачу сигналов в химических или электрических синапсах. В настоящее время нет единого мнения о том, какие именно локальные нейронные сети в глазу аплазии генерируют циркадианный ритм. По–видимому в сетчатке аплазий существуют клетки двух основных типов - фоторецепторы и вторичные нейроны. Фоторецепторы в свою очередь подразделяется на два подтипа: R- клетки, дающие на световое воздействие градуальный, неимпульсный ответ, и Н- клетки, реагирующие на свет потенциалом действия с последующей гепераолиризацией. Во вторичных нейронах, или D-клетках, в ответ на вспышку света возникает деполяризация, сопровождающаяся залпом импульсов, и эта импульсация коррелирует с разрядами, регистрируемыми в зрительном нерве; таким образом, можно предполагать, что именно активность D- клеток обусловливает импульсацию в зрительных нервах, изменяющуюся в соответствии с циркадианным ритмом. Важную роль во взаимодействиях между клетками разного типа играют, видимо, электрические синапсы.

Какие же механизмы лежат в основе особых песмейкерных свойств или D-клеток? Высказывались предположения, что эти механизмы могут быть связанны с мембраной, цитоплазмой или ядром. Из возможных цитоплазматических механизмов все больше внимания привлекает синтез белков, роль которого удобно изучать с помощью ингибиторов этот процесса. Можно видеть, что ингибитор белкового синтеза (анизомицин), длительно воздействующий в высокой концентрации, не подавляет импульсную активность в зрительном нерве, но циркадианный ритм этой активности утрачивается. После внесения в омывающую препарат среду ингибитора наблюдается задержка («сдвиг по фазе») очередного цикла. В присутствии анизомицина полибосомы не повреждаются; синтез новых пептидных цепей может начинаться, но не может идти дальше, так как анизомицин присоединяется к 60S- субъединице рибосомы (возможно, он специфически воздействует на пептидилтрансферазу). По мнению исследователя из Олбани Дж. Джеклета, «эти данные означают, что для хода циркадианных часов необходимо ежедневный синтез белка». Чтобы уточнить роль белкового синтеза и связать его с регуляцией импульсных разрядов, нужны дальнейшие эксперименты.

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Биология и естествознание»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2022 - www.refsru.com - рефераты, курсовые и дипломные работы