Электричество и магнетизм

Рассмотрим схему для измерения Rx. Через амперметр и резистор Rx течет один и тот же ток. Погреш­ность измерения тока определяется классом точности амперметра. Схема не вносит дополнительных погрешностей при измерении тока. Вольтметр показывает напряжение на последовательно соединённых резисторе и амперметре, т.е. показания вольтметра

U = UR + UA. (1)

Сопротивление резистора по показани

ям приборов Rx´ = U/I.

В действительности, сопротивление резистора Rх равно отношению напряжения на этом резисторе UR к силе тока. Из формулы (1) следует, что

UR =U - UA ,

тогда (2)

что, кроме того, следует из факта последовательного соединения измеряемого сопротивления и амперметра R´х = Rх+ RA. Сопротив­ление амперметра в этом случае совпадает с абсолютной ошибкой, вносимой измерительной схемой:

ΔRx= Rx´.- Rx = RA (3)

Систематическая относительная погрешность измерения сопротивления в этом случае равна

(4)

Чем больше сопротивление резистора по сравнению с сопротивле­нием амперметра, тем меньше относительная ошибка измерения. Сле­довательно, эта схема может быть использована при измерении бо­льших сопротивлений, когда Rx >>RA.

Рассмотрим схему на рис. 2. Эта схема не вносит дополнительной ошибки при измерении напряжения. Амперметр же определяет суммар­ный ток, текущий через резистор IR и вольтметр IB.

I= IR +IB (5)

Сопротивление по показаниям приборов Rx´ = U/ I . В действи­тельности, сопротивление резистора равно отношению напряжения на нем к току IR, текущему через резистор Rx = U/IR. Определяя IR из формулы (5), получим:

(6)

Абсолютная погрешность, вносимая схемой

(7)

Систематическая относительная ошибка в определении сопротивления без учёта тока, проходящего по вольтметру, равна

(8)

Из формулы (8) следует, что относительная погрешность при изме­рении по схеме рис. 2 тем меньше, чем меньше измеряемое сопроти­вление по сравнению с сопротивлением вольтметра. Следовательно, эта схема может быть использована при измерении малых сопротив­лений, когда Rх << RВ .

Теоретическая часть

Классификация электроизмерительных приборов

Электроизмерительную аппаратуру и приборы можно классифициро­вать по ряду признаков.

По назначению: приборы для измерения напряжения - вольтметры, милливольтметры; для измерения силы тока - амперметры, миллиам­перметры, микроамперметры; для измерения электрической мощности - ваттметры; сопротивления - омметры и т. д.

По принципу действия: магнитоэлектрические, электромагнитные, электростатические, электродинамические, тепловые, индукционные, электронные, вибрационные, самопищущие, цифровые и т.д. Систему прибора можно определить по условным обозначениям, которые наносятся на лицевую сторону прибора.

Магнитоэлектрическая система.

Электроизмерительные приборы магнитоэлектрической системы предназначены для измерения силы тока и напряжения в цепях постоянного тока. Применяя различные преобразователи и выпрямители, магнитоэлектрические приборы можно использовать также для электрических измерений в цепях переменного тока высокой частоты и для измерения неэлектрических величин (температуры, давлений, перемещений и т.д.) Работа приборов магнитоэлектрической системы основана на взаимодействии магнитных полей постоянного магнита и подвижной катушки, по которой протекает измеряемый ток.

Электромагнитная система

Приборы электромагнитной системы предназначены для измерения силы тока и напряжения в цепи переменного и постоянного тока. Принцип действия приборов электромагнитной системы основан на взаимодействии магнитного поля катушки, по которой протекает измеряемый ток и подвижного железного сердечника.

Электродинамическая система

Электродинамические измерительные приборы предназначены для измерения тока, напряжения и мощности в цепях постоянного и переменного токов. Принцип действия приборов электродинамической системы основан на взаимодействии катушек, по которым протекает измеряемый ток.

Тепловая система

Принцип действия приборов тепловой системы основан на изменении длины проводника, по которому протекает ток вследствие его нагревания.

Индукционная система

Устройство приборов индукционной системы основано на взаимодействии токов, индуцируемых в подвижной части прибора с магнитными потоками неподвижных электромагнитов.

Вибрационная система

Устройство приборов этой системы основано на резонансе при совпадении частот собственных колебаний подвижной части прибора с частотой переменного тока.

Электростатическая система

Устройство приборов электростатической системы основано на взаимодействии двух или нескольких электрически заряженных проводников. Под действием сил электрического поля подвижные проводники перемещаются относительно неподвижных проводников.

Термоэлектрическая система

Эта система характеризуется применением одной или нескольких термопар, дающих под влиянием тепла, выделяемого измеряемым током, постоянный ток в измерительный прибор магнитоэлектрической системы. Приборы термоэлектрической системы, в основном, применяются для измерения переменных токов высокой частоты.

Детекторная (выпрямительная) система

Устройство приборов основано на том, что переменный ток выпрямляется с помощью выпрямителя, вмонтированного в прибор. Полученный пульсирующий постоянный ток измеряется с помощью чувствительного прибора магнитоэлектрической системы.

Самопищущие приборы

Эти приборы осуществляют графическую запись с нормированной погрешностью значений одной или более измеряемых величин как функции другой переменной (например, времени) величины.

Осциллографы

Исследование быстропеременных процессов осуществляется с помощью осциллографов. Например, с помощью осциллографа можно измерять силу тока и напряжение и изменение их во времени, сдвиг фаз между ними, сравнивать частоты и амплитуды различных переменных напряжений. Кроме того, осциллограф, при применении соответствующих преобразователей, позволяет исследовать неэлектрические процессы, например, измерять малые промежутки времени, кратковременные давления и т.д.

Цифровые приборы

В настоящее время получили широкое распространение цифровые приборы. Под цифровыми электроизмерительными приборами понимают приборы непосредственной оценки, основанные на принципе кодирования измеряемой величины, благодаря чему осуществляется ее дискретное представление. Эти приборы являются наиболее совершенным видом электроизмерительных устройств. Процесс измерения в них полностью автоматизирован, а дискретная система отсчета исключает возможность внесения ошибок в результат измерений.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31  32  33 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы