Биоэнергетика сердца

Во время плато ПД увеличивается проницаемость мембраны для Са++, и он входит в клетку через Cа – каналы.

Это медленный Са++ ток. Дальше часть Са используется в миофибриллах для сокращения, равного 40 % всего Са. Вторая часть поступает в СПР, про запас. Когда деполяризация достигает T – системы, срабатывает Na – триггер, и СПР выбрасыва

ет весь запас Са из цистерн. Это 60 % всего Са. В соркоплазме концентрация Са увеличивается в 100 раз, с 10-8 до 10-5 М.

Для расслабления необходимо уменьшить его концентрацию в миофибриллах.

1-й механизм:

Обмен NaCа. Cа удаляется из клетки против концентрационного градиента за счет Е

движения Na внутрь клетки, по концентрационному градиенту. Это NaCанасос.

2-й механизм:

Кальциевый насос продольных трубочек СПР быстро поглощает Са++ из миоплазмы. Сам Cа активирует свое поглощение, стимулируя АТФ – азу мембраны СПР. АТФ дает Е для транспорта Са++ против градиента концентрации.

Эти процессы начинаются еще во время систолы и препятствуют сильному напряжению. Время транслокации Са++ вцистерны и определяет восстановление сердечной мышцы. Благодаря ему не происходит титанических сокращений.

Концентрация Са++ вблизи миофибрилл уменьшается, Cа покидает тропонин – тропо – миозиновые комплексы, так как СПР поглощает его в 3 раза более активнее, наступает расслабление.

Таким образом, во время ПД медленный ток Cа в клетку предопределяет и сокращение, и включение механизма расслабления.

Быстрый ток Naв клетку вызывает выход Са++ из СПР – триггер и дает Е дляудаления Cа из клетки.

3-й насос – K- Na, за счет Е АТФ, удаляет Na, и возвращает K. Наступает реполяризация мембраны, и клетка переходит в исходное состояние.

Таким образом, необходимо говорить о едином механизме сопряжения возбуждения с сокращением и расслаблением.

Собственно мышечное сокращение происходит следующим образом. Когда Са++ присоединяется к тропонину – С (TNC), в нем происходят конформационные изменения, в результате чего тропонин - тропомиозин – комплекс сдвигается и обнажает центры актина. Головки H-меромиозина образуют мостики с нитью актина. Используются Е – АТФ, ионы Са++, Mg++.

Свойства фермента – АТФ – азы проявляет сам H-меромиозин.

Мостики образуются и вновь разрушаются. Таким образом, нити актина скользят между миозином к центру соркомера, каждый раз на 1 шаг - 400 А°.

Мышца укорачивается, происходит систолическое сокращение. В результате химическая Е связейАТФ переходит в механическую работу.

Тропонин - тропомиозин – комплекс (с TN–I) блокирует актин. Ионы Са++ проходят через поры мембраны, и из СПР, Cа взаимодействует с TN – C, тропонин – тропомиозин поворачиваются, актин взаимодействует с миозином.

Cа уходит из клетки или в СПР.

Заключение

Таким образом, согласованное во времени протекание всех 3-х реакций – образования, транспорта и использования Е – обеспечивается эффективными механизмами их взаимной регуляции. Главный фактор, влияющий на Е – метаболизм - сам акт сокращения, регулируемый потоком Са++ во время плато ПД. Особенность сердца состоит в том, что значительное увеличение работы и потребления О2 мало изменяют концентрацию макроэргов в клетке (АТФ и КФ). В сердце велик метаболический оборот этих соединений, эффективная обратная связь:

Синтез Е Расход Е

Мы рассмотрели главные пути обмена Е в миокарде. Пока еще не все ясно. Многие вопросы еще требуют изучения.

Страница:  1  2  3 


Другие рефераты на тему «Медицина»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2020 - www.refsru.com - рефераты, курсовые и дипломные работы