Биоэнергетика сердца

Киндэй и Шнейдер в 1948 г. нашли в митохондриях полный набор ферментов для цикла Кребса. Грин, Рихтерих в 50-х годах обнаружили ферменты для окисления Б, Ж, У до субстратов цикла Кребса. Наконец, Чейнс, Вильямс показали, что ферменты терминального окисления (цитохромы, НАД) находятся только в митохондриях. Ферменты находятся в строгом порядке, одни – растворены, другие – прочно связаны с

о структурным белком.

Побочная функция митохондрий – синтез своих структурных белков и некоторых ферментов. Цитохромы, дегидрогеназы поступают от рибосом, извне.

Митохондрии в работе клетки – самое слабое звено. Они очень чувствительны на любое воздействие, особенно, на кислородную недостаточность. Первичной реакцией является торможение окислительного фосфорилирования, называемое мягким разобщением. Это включение свободного окисления.

В 60-х годах Митчел создал хемиоосмотическую теорию, по которой окислительное фосфорилирование есть перенос е*, р*, Н* во вне через мембрану, способную создавать и удерживать таким образом мембранный потенциал. Этот потенциал и регулирует распределение ионов, в том числе, и возможность обратного входа Н* для синтеза АТФ. Сильные нарушения движения ионов вызывает изменение РН. При свободном же окислении потенциала нет, и весь поток Е идет по короткому пути, в обход фосфорилирующих реакций, без синтеза АТФ. е* быстро переносится с восстановителя на окислитель.

Скулачев в 1962 г. показал, что свободное окисление – вынужденная мера, энергетически она не выгодна.

При заболеваниях сердца митохондрии страдают сильнее. Переключение реакций на свободное окисление уменьшает Е – снабжение. В далеко зашедших случаях подавляется и свободное окисление. Визуально наблюдается набухание митохондрий, что приводит к нарушению высокой организации внутренней структуры. Нарушается расположение ферментов и проницаемость мембраны. Возникает порочный круг, так как для восстановления структуры необходим приток Е.

АТФ выходит из митохондрий и не может быть использована миофибриллами. Наступает необратимое разрушение мембраны и гребней. При гипертрофии сердца митохондрии вначале набухают, затем уменьшаются в размерах. Кристы исчезают. Появляются жировые включения.

Функция митохондрий зависит от РН клетки. В кислой среде, когда РН ниже 6,6, - фосфорилирование тормозится, мембраны набухают. Это обратимо. В более кислой среде митохондрии сморщиваются. В щелочной среде митохондрии набухают.

При воздействии КА митохондрии сокращают свои размеры, и буквально, забиты кристами. Таким образом, любое патологическое состояние ведущее к нарушению обмена веществ (гипоксия, ацидоз, алкалоз, гиперметаболизм) – ведет к обратимому, либо к необратимому повреждению митохондрий.

Главными источниками Е для миокарда являются: глюкоза, лактаты и свободные ЖК. В незначительной степени участвуют кетотела (< 10%).

Как же меняется Е-обмен при различных экстремальных условиях? Нормально функционирующее сердце использует для энергетических целей различные субстраты, в выборе которых сердце весьма лабильно.

В условиях покоя важнейшим источником Е является глюкоза крови, (до 30 %).Утилизация глюкозы миокардом, в основном, определяется не ее концентрацией, а содержанием инсулина.

При мышечной работе потребление глюкозы уменьшается – до 10%. Организм экономит глюкозу для мозга и других органов. А при повышении концентрации глюкозы в крови утилизация ее миокардом возрастает. Окисление жира при этом снижается.

20-30% Е обеспечивают лактаты. Миокард свободно утилизирует из крови МК и ПВК. При мышечной работе лактаты все больше окисляются в миокарде, и дают 70% всей Е. Лишь при пульсе 190-200 ударов в минуту в сердце начинает преобладать анаэробный метаболизм, с выделением МК.

Сердце окисляет также СЖК, которые при голодании и натощак становятся основным источником. Е.

В последнее время подчеркивается роль в обмене миокарда ТГ и ЖК. В покое доля СЖК – 40%, ТГ – 15%. Во время работы доля жиров уменьшается в 2 раза.

Такую лабильность следует рассматривать как проявление адаптации миокарда к различным условиям функционирования.

Транспорт Е

В сердечных клетках Е переносится от митохондрий КФ ко всем местам использования: миофибриллам и клеточным мембранам, субклеточным мембранам. КФ-пути внутриклеточного транспорта Е в сердечных клетках приведены на схеме.

Схема КФ-пути внутриклеточноготранспорта Е в сердечных клетках

1-2 Главным макроэргом, выходящим из митохондрий, является КФ. В митохондриях работает замкнутый цикл превращения АТФ и АДФ, связанный через КФК - митохондрий.

Сила сокращения миофибриллы и длительность ПД коррелирует не с концентрацией АТФ, а с КФ, который, в свою очередь, от креатинина. Таким образом, на силу сокращения влияет не только поток Са++, но и концентрация КФ. КФ через КФК миофибриллы рефосфорилирует АДФ для акта сокращения.

Локализация КФК на мембране клеточного ядра позволяет считать, что Е - КФ используется в биосинтетических процессах ядра.

Обеспечивая эффективный транспорт Е, КФК - реакции выполняют также регуляторную функцию, участвуя в системе обратной связи между процессами образования и использования Е. Точное выяснение природы обратной связи требует дальнейшего изучения.

3–й раздел: Реакции использования Е

Для того, чтобы понять, как происходит сокращение мышцы сердца, необходимо знать строение кардиального миоцита.

Клетка на поперечном срезе содержит : ядро, миофибриллы, митохондрии, Т-система, СПР.

Основную массу клетки занимают миофибриллы. Их число доходит до 400-700 тысяч. Миофибриллы представляют длинные нити, которые переходят из саркомера в саркомер. Они состоят из 2 типов нитей. Толстые, нити миозина, находятся по середине соркомера. Ось миозина образует легкая субъединица – L-меромиозин. H- меромиозин – главная, тяжелая субъединица, снабжена головками, на расстоянии 400 А°, которые образуют мостики с актином.

Нити актина – тонкие, расположены между толстыми, в области Z – линии каждая соединена с 3-4 – мя соседнего саркомера.

F- актин за счет Е – АТФ может переходить в G – А, глобулярный А. К актину прикреплен тропомиозин, который не фиксирован и может перемещаться. Он блокирует главные центры актина. Тропомиозин несет на себе тропонин.

Тропонин имеет 3 субъединицы:

- TN – C – связывающая Са++;

- TN – I – ингибитор актина;

- TN – T – привязывает тропонин к тропомиозину.

Таким образом, тропонин – тропомиозин - в комплексе блокирует актин.

Сейчас о роли Са++ в сокращении. Главное депо Са++ – это T – система, СПР и митохондрии. T– система образуется выпячиваниями сарколеммы в области Z – линии внутрь клетки.

СПР состоит из сети продольных трубочек и латеральных цистерн, где и концентрируется Са++ для очередного залпа. В цистернах содержится мукополисахарид, который быстро связывает Са++. Таким образом, свободный Са++, попав в продольную сеть, движется к цистернам, где его концентрация меньше, а связанного – больше, это – транслокация Са++. Запас Са++ создается только на 1 залп. Цистерны близко прилегают к T – системе.

Страница:  1  2  3 


Другие рефераты на тему «Медицина»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2020 - www.refsru.com - рефераты, курсовые и дипломные работы