Название реферата: Анализ нагруженности плоского рычажного механизма
Раздел: Производство и технологии
Скачано с сайта: www.refsru.com
Дата размещения: 08.08.2012
Анализ нагруженности плоского рычажного механизма
ВВЕДЕНИЕ
В процессе развития человек научился создавать и широко использовать искусственных помощников, которые заменяют ручной труд.
Различают три группы таких устройств:
1. Машины;
2. Аппараты;
3. Приборы.
Для машин характерна периодическая повторность перемещения их составных частей, в частности, рабочих устройств (рабочих органов), которые непосредственно выполняют производственные операции.
Составные части машин вместе с рабочими устройствами обычно называют механизмами, а твердые тела, их составляющие, называют звеньями. Звенья в свою очередь тоже могут иметь составляющие, которые называются деталями. Звенья, входящие в механизм всегда соединяются между собой, и подвижное соединение каждых двух звеньев называется кинематической парой.
Совокупность звеньев и пар образуют кинематическую цепь. Из кинематических цепей и образуются механизмы.
В зависимости от расположения траекторий звеньев различают два вида механизмов – пространственный и плоский.
В ходе данной работы рассмотрим плоский механизм, относящийся к классу наиболее часто используемых в современных машинах механизмов.
1. ДИНАМИЧЕСКИЙ АНАЛИЗ МЕХАНИЗМА
1.1 Структурный анализ механизма
1.1.1 Структурная схема механизма
Структурную схему механизма следует строить в выбраном маштабе, придерживаясь заданных размеров звеньев. На кинематической схеме должны быть данные о всем необходимом для определения движения. Структурная схема механизма приведена в заданном положении на рисунке 1.1
Рисунок 1.1 Структурная схема механизма
0) стойка;
1) кривошип;
2-3) шатун;
4) коромысло;
5) ползун;
1.1.2 Перечень звеньев механизма
Звенья механизма связаны кинематическими парами:
1-2 – кинематическая пара 5-го класса, вращательная;
2-3 – кинематическая пара 5-го класса, вращательная;
3-4 – кинематическая пара 5-го класса, вращательная;
4-1 – кинематическая пара 5-го класса, вращательная;
5-1 – кинематическая пара 5-го класса, вращательная;
5-3 – кинематическая пара 5-го класса, вращательная;
4-5 – кинематическая пара 5-го класса, поступательная
Кинематические пары 4-го класса отсутствуют.
1.1.3 Определение степени подвижности механизма
Степень подвижности данного механизма определим по формуле Чебышева:
, (1.1)
где n – число подвижных звеньев механизма;
P5 – число пар 5 класса;
P4 – число пар 4 класса;
n=5; p5=7; p4=0.
Так как степень подвижности механизма равна 1, то для работы данного механизма необходимо одно ведущее звено.
1.2 Динамический анализ механизма
1.2.1 построение плана скоростей точек и звеньев механизма
Для определения скоростей точек и звеньев механизма применяем метод планов. Построение плана скоростей начинаем с ведущего звена механизма.
Посчитаем угловую скорость ведущего звена по формуле:
, (1.2)
n – частота вращения ведущего звена;
= 21 с-1.
Поскольку известно, что его угловая скорость wОА – величина постоянная, то линейная скорость точки А равна:
VА=w11О1А=21×0,025=0,54 м/с, (1.3)
где lо1А – длина звена О1А в метрах;
Находим скорость точки А на плане скоростей. Направление вектора VОА перпендикулярно звену и направлен вдоль wо1А.
Из произвольно выбранной точки РV (полюс) откладываем вектор произвольной длины, численно равный вектору скорости VА. Определяем масштабный коэффициент скорости:
, (1.4)
где VА – истинная скорость точки А, м/с;
рv×а– длина вектора на плане, мм.
Для определения скорости точки В воспользуемся условием принадлежности точки В звену АВ. Тогда можно записать следующее уравнение:
, (1.5)
где VА– известно и по величине, и по направлению;
VBА – известно лишь то, что линия действия этого вектора перпендикулярна звену АВ.
Эту прямую проведем на плане скоростей через точку а. В полюсе ставим точку В. Прямая будет параллельна оси АВ. Тогда:
(1.6)
Скорость VВО2 направлена вдоль оси ВО2. На пересечении ВО2 и АВ будет находится точка В.
Численно скорость VВ равна:
мм/с (1.7)
Поскольку точка Е принадлежит этому звену ВО2, то для векторов скоростей справедлива запись:
(1.9)
где lBО2 и lBE – длины соответствующих звеньев.
На плане скоростей точка Е находится на отрезке bо2 и делит его в соответствии.
Длина вектора, который соединяет полюс с точкой Е, отвечает вектор скорости VЕ, численное значение которой равно:
мм/с (1.10)
Определяем скорость точки F, по формуле:
(1.11)
(1.12)
Вектором скорости точки D будет результатом общего решения векторных уравнений. В первом уравнении первое слагаемое известно по величине и по направлению.
Абсолютное значение скорости точки A, С, Е, F сведем в таблицу 1.1.
Определяем скорости центров масс по формуле :
(1.13)
Значения скоростей центров масс занесем в таблицу 1.2.
Определение угловых скоростей звеньев механизма
Полученный план скоростей позволяет не только определить скорости всех точек механизма, а также величину и направление всех скоростей звеньев. Все линии плана, исходящие из точки , представляют собой абсолютные скорости точек. Периферийные линии – относительные скорости.
Определим угловую скорость звена АВ:
(1.14)
где VAВ – скорость движения точки A, относительно точки В.
Определим угловую скорость звена ВО2:
(1.15)
Определим угловую скорость звена ED:
(1.16)
Угловые скорости сведем в таблицу 1.1
Таблица 1.1 – Скорости точек и звеньев механизма
VА |
VВ |
VE |
VD |
w2 |
w3 |
w4 |
мм/с |
мм/с |
мм/с |
мм/с |
Рад/с |
Рад/с |
Рад/с |
0.54 |
0.3 |
0.21 |
0.12 |
5.25 |
1.75 |
5.16 |
Vs1 |
Vs2 |
Vs3 |
Vs4 |
Vs5 |
- |
- |
мм/с |
мм/с |
мм/с |
мм/с |
мм/с |
- |
- |
0.12 |
0.22 |
0.25 |
0.13 |
0.12 |
- |
- |
Масштабный коэффициент плана скоростей
1.2.2 Определение ускорений точек и звеньев механизма
Для определения ускорений точек применяем метод планов ускорений. Построение плана ускорений начинаем с ведущего звена механизма, учитывая, w – постоянная величина. Тогда ускорение точки А ведущего звена:
м/с2, (1.17)
Определение масштабного коэффициента плана ускорений производится следующим образом:
м/с2.мм, (1.18)
где pаа – длина вектора в мм.
Векторное уравнение плоскопараллельного движения звена АВ с полюсом в точке А имеют вид:
(1.19)
где – нормальная составляющая ускорения точки В в её относительном движении вокруг точки А;
– тангенциальная составляющая ускорения точки В в её относительном движении вокруг точки А.
В этой векторной сумме ускорение точки А известно, нормальная составляющая ускорения движения точки В относительно точки А направлено от точки В к точке В и равно:
, (1.20)
А его длина на плане ускорений считается с учётом масштабного коэффициента по формуле:
, (1.21)
На плане ускорений с точки а вдоль звена АВ проводим вектор длинной nВА. О третьем составляющем векторного ускорения известно только направление – перпендикулярное звену. Потому на плане ускорений с конца вектора nВА проводим перпендикулярную линию.
Ускорение точки D найдем из звена ED. Тогда ускорение точки D равно:
(1.22)
В векторном уравнении 1.22 первое слагаемое известно, второе направлено от точки вдоль звена и численно равно:
м/с (1.23)
Длина отрезка на плане ускорений:
1.3 мм (1.24)
Найдем ускорение aD из звена ED :
(1.25)
м/с (1.26)
(1.27)
Значения ускорений точек и звеньев занесены в таблицу 1.2.
Угловые ускорения рассчитываются по формулам:
(1.28)
(1.29)
(1.30)
Для определения центра масс aS1 звена ОА найдем на плане ускорения точку S1, по условию она лежит по средине звена, поэтому:
м/c2 (1.31)
Аналогично находим центры масс других звеньев:
(1.32)
(1.33)
(1.34)
(1.35)
Ускорения точек занесем в таблицу 1.2.
Таблица 1.2 – Ускорения точек и центров масс угловые ускорения звеньев механизма
аА |
аВ |
аЕ |
аD |
E2 |
E3 |
E4 |
мм/с2 |
мм/с2 |
мм/с2 |
мм/с2 |
1/с2 |
1/с2 |
1/с2 |
12.07 |
12,8 |
9,2 |
11,5 |
295 |
220 |
65 |
aD |
|
aS3 |
aS4 |
- |
- |
- |
1/с2 |
1/с2 |
1/с2 |
1/с2 |
- |
- |
- |
5.6 |
4.6 |
9 |
6.4 |
- |
- |
- |
Масштабный коэффициент плана ускорений – .
1.3 Кинетостатический анализ механизма
1.3.1 Определение сил инерции механизма
Если к механизму кроме внешних сил приложить силы инерции его звеньев, то условно можно считать, что механизм находится в равновесии. В этом случае для определения реакций в кинематических парах можно использовать уравнения статики, если в них включить силы инерции звеньев.
Сила инерции звена направлена в сторону, противоположную направлению ускорения центра масс этого звена и равна произведению массы этого звена на ускорение центра масс:
(1.36)
При этом существует также главный момент инерции звена, который приложен к центру масс звена и направлен в противоположную угловому ускорению звена сторону. Определяется по формуле:
(1.37)
где IS – момент инерции звена, для стержневого механизма ,
;
Е– угловое ускорение звена, .
Силы инерции механизма приведены в табл. 1.3.
Таблица 1.3 – Рассчитанные значения сил и моментов инерции звеньев механизма
Fи2 |
Fи3 |
Fи4 |
Fи5 |
Н |
Н |
Н |
Н |
23 |
28,8 |
26,6 |
22,4 |
Масштабный коэффициент плана сил
где - длина вектора на плане сил
1.3.2 Определение реакций в кинематических парах
Кинематический анализ механизма начинаем с группы звеньев наиболее удаленной от ведущего звена. Наиболее отдаленной группой Ассура является группа, состоящая из звеньев 4-5.
Для силового расчета группы 4-5 к шарниру D необходимо приложить силу RtD, которая равна по модулю силе RtE и противоположна ей по направлению.
Реакции в шарнире Е – неизвестна. Необходимо разложить реакции в шарнире E на составляющие по направлению осей RnE и по направлению, которое ей перпендикулярно RtE .
Тангенциальные составляющие можно найти, если записать уравнение суммы моментов каждого звена относительно точки D.
Уравнение равенства звена 3 (ED):
(1.38)
где: hи1 – плечо силы Fи4, мм.
h2 – плечо силы GED.
Из уравнения 1.38 следует, что:
H (1.39)
Для определения остальных неизвестных составим векторное уравнение:
, (1.40)
где: все слагаемые известны по модулю и по направлению, а первый только по направлению.
Строим силовой многоугольник в выбранном масштабе, откладывая последовательно векторы сил.
Масштабный коэффициент определим по формуле:
Н/мм (1.41)
Построив силовой многоугольник найдем:
H (1.42)
Рассмотрим звено BO2:
(1.43)
тогда:
Н (1.44)
Рассмотрим звено АВ:
(1.45)
Тогда:
Н (1.46)
Строим план сил группы 2-3.
Реакции в кинематических парах занесем в таблицу 1.4
Таблица 1.4- Рассчитанные реакции в кинематических парах.
|
|
|
|
|
|
|
|
|
н |
н |
н |
н |
н |
н |
н |
н |
н |
18 |
31.25 |
37.5 |
9.8 |
33.6 |
40 |
23 |
40 |
32.5 |
1.3.3 Определение уравновешивающей силы
На кривошип O2A действует шатун с силой RA. Для определения уравновешивающей RA=-RA необходимо задать ее направление. Считается, что сила Fур перпендикулярна звену АO1.
Уравнение моментов всех сил, действующих на кривошип относительно точки (O1) имеет вид:
(1.47)
Отсюда:
H (1.48)
Н.м (1.49)
Полученные данные занесем в таблицу 1.4.
Таблица 1.4
Fур, Н |
Мур, Н×м |
28 |
0.7 |
2. ПРОЕКТНЫЙ РАСЧЕТ МЕХАНИЗМА НА ПРОЧНОСТЬ
В результате динамического анализа плоского рычажного механизма были определены внешние силы, действующие на каждое звено и кинематическую пару. Этими внешними усилиями являются силы инерции Fi, моменты инерции M и реакции в кинематических парах R. Под действием внешних сил звенья плоского механизма испытывают деформации. В данном механизме преобладают совместные деформации изгиба и растяжения.
Анализ нагруженной группы Асура 4-5 показывает, что звено 4 во время работы механизма испытывает совместное действие изгиба и растяжения. Для оценки прочности механизма необходимо при помощи метода сечений определить величину внутренних усилий, действующих в сечениях. Значения всех сил сведем в таблицу.
Таблица 2.1
|
|
|
Mi |
|
|
14 |
25 |
21 |
0,021 |
13 |
30 |
2.1 Построение эпюр NZ, QY, MX
Нагруженность звена позволяет выделить два участка, чтобы использовать метод сечений для них. Использование метода сечений для нормальной силы NZ дает следующие уравнения:
I участок
(2.1)
II участок
(2.2)
По этим данным строим эпюру NZ.
Для поперечной силы QY на соответствующих участках записываются такие уравнения:
I участок
(2.3)
II участок
(2.4)
Согласно с полученными значениями строим эпюру QY.
Аналитические уравнения записываем также для изгибающего момента на участках I и II:
I участок
(2.5)
II участок
(2.6)
Эпюру МХ строим по полученным значениям моментов.
Из эпюр МХ и NZ видно опасное звено механизма.
Mmax =Нм
NZmax = H
2.2 Подбор сечений
Совмещенные деформации изгибания и растягивания являются причиной возникновения в материале нормального напряжения, которое определяется алгебраической суммой напряжений от изгибания и растяжения:
σmax = σ1 + σ2 = NZmax/F + Mmax/WZ (2.7)
где F – площадь сечения;
WZ – момент инерции сечения относительно оси Z.
Это напряжение σmax , согласно с условиями прочности, должно быть не больше допускаемого │σ│= 170 МПа:
.
σmax = NZmax/F + Mmax/WZ ≤ │σ│ (2.8)
Это уравнение дает возможность найти геометрические размеры опасного разреза через подбор параметров F и WZ.
Будем рассчитывать для прямоугольного сечения. Тогда
Wx=bh2/6
h = 2b; F = hb=2b2; WZ = 4b3/6; (2.9)
b==5mm
h=2b=2*5=10mm
Так как условие прочности выполняется, то полученный диаметр подходит.
Для круглого сечения используем отношения:
;
; (2.11)
Отсюда находим диаметр:
d==3mm
F=πD2/4 = 3.14/4=7.06
Для сечения в виде двутавра параметры находим подбором, подставляя в выражение (2.13) значение WX. Принимая [σ] = 70 МПа (латунь), выбираем двутавр с параметрами Н = 15 мм, В = 7 мм, S = 1.5мм, S1 = 1.5 мм, ГОСТ 13621-74, изготовленный из латуни.
(2.13)
WZ= 0,245/70*106=0, 0035
Выводы
В ходе выполнения курсовой работы были изучены методы анализа и расчета плоских рычажных механизмов. В результате динамического анализа были определены скорости, ускорения, силы и моменты, действующие на звено.
Расчет на прочность звеньев механизма показал наиболее опасные участки.
Исходя из конструкторских соображений, был изменен диаметр круглого сечения с 4,8мм на 5мм. Размеры прямоугольного сечения 5мм на 10 мм.
Подобрав сечения, определяем, что наиболее выгодным является сечение в форме двутавра, так как с точки зрения затрат материала наиболее выгодные сечения те, у которых большая доля материала размещена в верхней и нижней частях сечения где напряжения наибольшие и поэтому материал наиболее полно используется.
СПИСОК ЛИТЕРАТУРЫ
1 Степин П.А. Сопротивление материалов. Изд. 5-е, перераб. и доп. Учебник для студентов машиностроительных вузов. М., «Высшая школа», 1973.
2 Методические указания к курсовой работе по курсу «Теоретическая механика» для студентов специальностей 7.091807 и 7.091002 / Автор Евстратов Н.Д. – Харьков: ХТУРЭ, 2009. – 40 с.
3. Артоболевский И.И. Теория механизмов и машин. – М.: Наука, 2008.-640с.
4 Тарг С.М. Краткий курс теоретической механики. – М.: Высш. Шк. 1986.-416с.
5 Конспект лекций .
6 Анурьев В.И. Справочник конструктора-приборостроителя. – М.: «Приборостроение» 1967 688 с.